import json from functools import partial import gradio as gr import pandas as pd import plotly.express as px import plotly.graph_objects as go import pycountry from gradio_rangeslider import RangeSlider from tqdm import tqdm with open("results.json") as f: languages = json.load(f) languages_with_scores = [lang for lang in languages if lang["t2t_score"] is not None] # Global constants for metric mappings METRICS = { "t2t": [ { "display_name": "Overall Text-to-Text Performance", "field_name": "t2t_score", "label": "Overall Score", "explanation": """ **Overall Score for Text-to-Text Performance**: A weighted combination of all metrics, providing a holistic view of model performance across different language tasks. Higher scores indicate better overall language capabilities. """, }, { "display_name": "Translation (BLEU)", "field_name": "mt_bleu", "label": "BLEU Score", "explanation": """ **Translation BLEU**: BiLingual Evaluation Understudy (BLEU) measures how similar AI-generated translations are to human reference translations. It calculates n-gram precision and applies a brevity penalty. Scores range from 0 to 1, with higher values indicating better translation quality. """, }, { "display_name": "Translation (ChrF)", "field_name": "mt_chrf", "label": "ChrF Score", "explanation": """ **Translation ChrF**: Character n-gram F-score evaluates translations at the character level rather than word level. This metric is particularly valuable for morphologically rich languages and can better capture partial word matches. Higher scores (0-1) indicate better translations. """, }, { "display_name": "Classification (Accuracy)", "field_name": "cls_acc", "label": "Classification Accuracy", "explanation": """ **Classification Accuracy**: Measures how accurately models can classify text into predefined categories. This evaluates a model's understanding of content and context across different languages. Reported as a percentage where higher values indicate better classification performance. """, }, { "display_name": "Masked Language Modeling (ChrF)", "field_name": "mlm_chrf", "label": "MLM ChrF Score", "explanation": """ **Masked Language Modeling ChrF**: Evaluates how well models can predict masked (hidden) portions of text. This tests a model's understanding of language structure and semantics by measuring the character-level similarity between predicted and actual text. Higher scores indicate better language understanding. """, }, ], "s2t": [ { "display_name": "Overall Speech-to-Text Performance", "field_name": "s2t_score", "label": "Overall Score", "explanation": """ **Overall Score for Speech-to-Text Performance**: A weighted combination of all metrics, providing a holistic view of model performance across different language tasks. Higher scores indicate better overall language capabilities. """, }, { "display_name": "Automatic Speech Recognition (WER)", "field_name": "asr_wer", "label": "WER", "explanation": """ **Automatic Speech Recognition Word Error Rate**: Measures the accuracy of speech-to-text transcription. It calculates the minimum number of word edits (insertions, deletions, substitutions) needed to transform the transcription into the reference text, divided by the number of words in the reference. Lower scores indicate better performance, with 0 being perfect transcription. """, }, { "display_name": "Automatic Speech Recognition (ChrF)", "field_name": "asr_chrf", "label": "ChrF", "explanation": """ **Automatic Speech Recognition ChrF**: Character n-gram F-score evaluates translations at the character level rather than word level. This metric is particularly valuable for morphologically rich languages and can better capture partial word matches. Higher scores (0-1) indicate better translations. """, }, ], } def mean(lst): return sum(lst) / len(lst) def create_leaderboard_df(model_type, metric=None): metric = metric or METRICS[model_type][0] _model_type = {"t2t": "text-to-text", "s2t": "speech-to-text"}[model_type] models = { score["model"] for lang in languages_with_scores for score in lang["scores"] if score["model_type"] == _model_type } model_scores = [ {"model": score["model"], metric["field_name"]: score[metric["field_name"]]} for lang in languages_with_scores for score in lang["scores"] for model in models if score["model"] == model ] df = ( pd.DataFrame(model_scores) .groupby("model") .agg({metric["field_name"]: ["mean", "count"]}) .reset_index() ) # Flatten the multi-level column names df.columns = df.columns.map( lambda x: f"{x[0]}_{x[1]}" if isinstance(x, tuple) else x ) df = df.rename( columns={ f"{metric['field_name']}_mean": metric["label"], f"{metric['field_name']}_count": "Languages Tested", "model_": "Model", } ) df[metric["label"]] = df[metric["label"]].round(3) df = df.sort_values(metric["label"], ascending=False) df["Rank"] = range(1, len(df) + 1) df["Rank"] = df["Rank"].apply( lambda x: "🥇" if x == 1 else "🥈" if x == 2 else "🥉" if x == 3 else str(x) ) df = df[["Rank", "Model", metric["label"]]] return gr.DataFrame( value=df, label="Model Leaderboard", show_search=False, datatype=["number", "markdown", "number"], ) def create_model_comparison_plot(metric): top_languages = sorted( languages_with_scores, key=lambda x: x["speakers"], reverse=True )[:10] # Create appropriate title and y-axis label based on metric title = f"{metric['display_name']} by Model and Language" y_label = metric["label"] # Flatten the data for the selected metric scores_flat = [] for lang in top_languages: for score in lang["scores"]: # Get the value directly using the field name if metric["field_name"] not in score: continue value = score[metric["field_name"]] if value is not None: scores_flat.append( { "language": lang["language_name"], "model": score["model"], "value": value, } ) df = pd.DataFrame(scores_flat) fig = px.bar(df, x="language", y="value", color="model", barmode="group") fig.update_layout( title=title, xaxis_title=None, yaxis_title=y_label, barmode="group", height=500, legend=dict( orientation="h", # horizontal orientation yanchor="bottom", y=-0.3, # position below plot xanchor="center", x=0.5, # center horizontally ), ) return fig def create_language_stats_df(metric): # Create a list to store flattened data flat_data = [] for lang in languages: # Find the best model and its BLEU score best_model = ( max( lang["scores"] or [{"t2t_score": None, "model": None}], key=lambda x: x.get("t2t_score", 0), ) if lang["t2t_score"] is not None else None ) model = best_model["model"] if best_model else None model_name = model.split("/")[-1] if model else "N/A" model_link = ( f"{model_name}" if model else "N/A" ) commonvoice_link = ( f" 🎙️ {round(lang['commonvoice_hours'])}h" if lang["commonvoice_hours"] else "N/A" ) language_link = f"{lang['language_name']}" row = { "Language": language_link, "Speakers (M)": round(lang["speakers"] / 1_000_000, 1), # "Models Tested": len(lang["scores"]), # "Overall": round(lang["overall_score"], 3) # if lang["overall_score"] is not None # else "N/A", "Best Model": model_link, "Trans­la­ti­on": round(lang["mt_chrf"], 3) if lang["mt_chrf"] is not None else "N/A", "Classi­fi­ca­ti­on": round(lang["cls_acc"], 3) if lang["cls_acc"] is not None else "N/A", "Masked Language Modeling": round(lang["mlm_chrf"], 3) if lang["mlm_chrf"] is not None else "N/A", "Speech Reco­gni­ti­on": round(lang["asr_chrf"], 3) if lang["asr_wer"] is not None else "N/A", "Common­Voice": commonvoice_link, } flat_data.append(row) df = pd.DataFrame(flat_data) return gr.DataFrame( value=df, label="Language Results", show_search="search", pinned_columns=1, column_widths=[ "100px", "100px", # "100px", # "100px", "200px", # Best Model "100px", # MT "100px", # CLS "100px", # MLM "100px", # ASR "100px", # Common Voice ], datatype=[ "markdown", # Language "number", # Speakers # "number", # Models Tested # "number", # Overall "markdown", # Best Model "number", # Translation "number", # Classification "number", # MLM "number", # ASR "markdown", # CommonVoice Hours ], ) def create_scatter_plot(metric): # Create a list to store data for the scatter plot scatter_data = [] for lang in languages_with_scores: if lang["speakers"] < 100_000: continue # Calculate average score for this metric across all models scores = [ score[metric["field_name"]] for score in lang["scores"] if metric["field_name"] in score and score[metric["field_name"]] is not None ] if scores: # Only include if we have valid scores avg_score = sum(scores) / len(scores) scatter_data.append( { "language": lang["language_name"], "speakers": lang["speakers"], "score": avg_score, "family": lang["language_family"], } ) fig = go.Figure() x_vals = [data["speakers"] / 1_000_000 for data in scatter_data] y_vals = [data["score"] for data in scatter_data] s_vals = [data["speakers"] / 20_000_000 for data in scatter_data] color_pallette = [ "LightSkyBlue", "LightGreen", "LightCoral", "LightPink", "LightGoldenRodYellow", "LightGray", "LightSalmon", "LightSeaGreen", ] color_mapping = { family: color for family, color in zip( sorted(set(data["family"] for data in scatter_data)), color_pallette ) } c_vals = [color_mapping.get(data["family"], "LightGray") for data in scatter_data] labels = [data["language"] for data in scatter_data] hover_template = f"%{{text}}
Speakers: %{{x:.1f}}M
{metric['label']}: %{{y:.3f}}" fig.add_trace( go.Scatter( x=x_vals, y=y_vals, marker=dict(size=s_vals, color=c_vals), mode="markers+text", text=labels, textposition="top center", hovertemplate=hover_template, ) ) fig.update_layout( title=None, xaxis_title="Number of Speakers (Millions)", yaxis_title=metric["label"], height=500, showlegend=False, ) fig.update_xaxes(type="log") return fig def format_number(n): """Format number with K/M suffix""" if n >= 1_000_000: return f"{n/1_000_000:.1f}M" elif n >= 1_000: return f"{n/1_000:.0f}K" return str(n) def get_population_data(): import xml.etree.ElementTree as ET from language_data.util import data_filename filename = data_filename("supplementalData.xml") root = ET.fromstring(open(filename).read()) territories = root.findall("./territoryInfo/territory") data = {} for territory in territories: t_code = territory.attrib["type"] t_population = float(territory.attrib["population"]) data[t_code] = t_population return data # Helper functions for visualization def make_black_bar(value, max_width=10): filled = int(value * max_width) return "⬛️" * filled + "⬜️" * (max_width - filled) def make_colored_bar(score, max_width=10): """Create a colored bar using Unicode blocks based on normalized score 🟦 for high values (>0.35) 🟨 for medium values (0.25-0.35) 🟥 for low values (<0.25) ⬜ for empty space This function handles both normalization and bar creation. """ # Create the bar based on normalized value filled = int(score * max_width) filled = max(0, min(filled, max_width)) empty = max_width - filled if score > 0.35: return "🟦" * filled + "⬜" * empty elif score > 0.25: return "🟨" * filled + "⬜" * empty else: return "🟥" * filled + "⬜" * empty def create_world_map(metric): # Collect all country data population_data = get_population_data() country_data = {} for lang in languages: # Skip languages without the required data if "population" not in lang or lang[metric["field_name"]] is None: continue for country_code, speakers in lang["population"].items(): try: # Convert alpha_2 (2-letter) to alpha_3 (3-letter) code country = pycountry.countries.get(alpha_2=country_code) if country is None: continue iso3_code = country.alpha_3 if iso3_code not in country_data: country_data[iso3_code] = { "total_speakers": 0, "population": population_data.get(country_code, 0), "weighted_score_sum": 0, "languages": [], } country_data[iso3_code]["total_speakers"] += speakers country_data[iso3_code]["weighted_score_sum"] += ( speakers * lang[metric["field_name"]] ) country_data[iso3_code]["languages"].append( { "name": lang["language_name"], "speakers": speakers, "score": lang[metric["field_name"]], } ) except (KeyError, AttributeError): # Skip invalid or unrecognized country codes continue # Calculate final weighted averages and prepare hover text countries = [] scores = [] hover_texts = [] for country_code, data in country_data.items(): weighted_avg = data["weighted_score_sum"] / data["total_speakers"] if data["total_speakers"] > 0 else None try: country_name = pycountry.countries.get(alpha_3=country_code).name except AttributeError: country_name = country_code # Sort languages by number of speakers langs = sorted(data["languages"], key=lambda x: x["speakers"], reverse=True) # Take top 5 languages and summarize the rest main_langs = langs[:5] other_langs = langs[5:] # Create language rows with bars lang_rows = [] for lang in main_langs: percentage = (lang["speakers"] / data["population"]) * 100 speaker_bar = make_black_bar(percentage / 100) # Use the integrated make_colored_bar function directly score_bar = make_colored_bar(lang["score"]) lang_rows.append( f"{lang['name']}
" f"{speaker_bar} {format_number(lang['speakers'])} speakers
" f"{score_bar} {lang['score']:.3f} {metric['label']}
" ) # Add summary for other languages if any if other_langs: other_speakers = sum(lang["speakers"] for lang in other_langs) other_percentage = (other_speakers / data["population"]) * 100 other_avg_score = sum(lang["score"] for lang in other_langs) / len( other_langs ) speaker_bar = make_black_bar(other_percentage / 100) # Use the integrated make_colored_bar function directly score_bar = make_colored_bar(other_avg_score) lang_rows.append( f"+{len(other_langs)} other languages
" f"{speaker_bar} {format_number(other_speakers)} speakers
" f"{score_bar} {other_avg_score:.3f} {metric['label']}
" ) hover_text = f"{country_name}

" f"{'
'.join(lang_rows)}" countries.append(country_code) scores.append(weighted_avg) hover_texts.append(hover_text) fig = go.Figure( data=go.Choropleth( locations=countries, locationmode="ISO-3", z=scores, text=hover_texts, hoverinfo="text", colorscale=[[0, "#ff9999"], [1, "#99ccff"]], colorbar=dict( title=metric["label"], orientation="h", # horizontal orientation y=-0.2, # position below map yanchor="bottom", len=0.5, # length of colorbar x=0.5, # center horizontally xanchor="center", thickness=20, # make it a bit thicker when horizontal ), ) ) fig.update_layout( title=dict( text=f"{metric['display_name']} by Country", x=0.5, xanchor="center" ), geo=dict( showframe=True, showcoastlines=True, projection_type="equal earth", showland=True, landcolor="#f8f9fa", coastlinecolor="#e0e0e0", countrycolor="#e0e0e0", ), height=600, margin=dict(l=0, r=0, t=30, b=0), paper_bgcolor="white", hoverlabel=dict( bgcolor="beige", font_size=12, ), ) return fig def create_metric_selector(model_type): match model_type: case "t2t": choices = [m["display_name"] for m in METRICS["t2t"]] case "s2t": choices = [m["display_name"] for m in METRICS["s2t"]] return gr.Dropdown( choices=choices, value=choices[0], label="Select Metric", interactive=True ) def create_metric_explanation(metric): return gr.Markdown(metric["explanation"], container=True) css=""" .radio-group .wrap { display: grid !important; grid-template-columns: 1fr 1fr; } .nav-holder {display: none;} .share-link { display: inline-flex; align-items: center; background-color: #f0f0f0; border-radius: 8px; padding: 8px 12px; margin: 10px 0; font-family: monospace; transition: all 0.2s ease; cursor: pointer; text-decoration: none; color: #333; } .share-link:hover { background-color: #e0e0e0; } .share-link .icon { margin-left: 8px; } .title-row { display: flex; align-items: center; justify-content: space-between; margin-bottom: 1rem; } .title-row h2 { margin: 0; } """ shortcut_js = """ """ # Create the visualization components with gr.Blocks(title="AI Language Proficiency Benchmark", css=css, head=shortcut_js) as demo: language_choices = [ f"{lang['language_name']} ({lang['bcp_47']})" for lang in languages ] models = {score["model"] for lang in languages for score in lang["scores"]} search = gr.Dropdown( choices=language_choices, # + list(models), value="Search for Language or Model", allow_custom_value=True, interactive=True, container=False, elem_id="search-dropdown" ) search.focus(fn=lambda x: None, inputs=search, outputs=None, js="(x) => {empty_search()}") search.change(fn=lambda x: None, inputs=search, outputs=None, js="(x) => {redirect_to_lang(x)}") gr.Markdown("# AI Language Proficiency Benchmark") gr.Markdown("Comparing language proficiency across different models and languages.") with gr.Row(): start_model_type = "Text-to-Text" model_type = gr.Radio( choices=["Text-to-Text", "Speech-to-Text"], value=start_model_type, label="Select Model Type", interactive=True, elem_classes="radio-group", ) start_metric = METRICS["t2t"][0] metric = gr.Dropdown( choices=[metric["display_name"] for metric in METRICS["t2t"]], value=start_metric["display_name"], label="Main task and metric to display in figures and map", interactive=True, ) with gr.Row(): with gr.Column(): with gr.Accordion("Model Filters", open=False): model_licenses = gr.CheckboxGroup( choices=["open source", "commercial"], value=["open source", "commercial"], label="Filter by Model License", interactive=True, ) model_sizes = RangeSlider( minimum=0, maximum=1000, value=(0, 1000), label="Filter by Model Size (in Billion Parameters)", interactive=True, ) with gr.Column(): with gr.Accordion("Language Filters", open=False): unit_of_analysis = gr.Radio( choices=["Languages", "Language Families", "Regions"], value="Languages", label="Select Unit of Analysis", interactive=True, ) family_filter = gr.CheckboxGroup( choices=[ "Indo-European", "Sino-Tibetan", "Afro-Asiatic", "Dravidian", "Uralic", "Austronesian", "Other", ], value=[ "Indo-European", "Sino-Tibetan", "Afro-Asiatic", "Dravidian", "Uralic", "Austronesian", "Other", ], label="Filter by Language Family", interactive=True, ) speakers_filter = RangeSlider( minimum=0, maximum=100_000_000, value=(0, 100_000_000), label="Filter by Number of Speakers", interactive=True, ) gr.Markdown("## Model Comparison") leaderboard_df = create_leaderboard_df("t2t", start_metric) model_comparison_plot = gr.Plot( value=create_model_comparison_plot(start_metric), label="Model Comparison", ) gr.Markdown("## Language Stats") create_language_stats_df(start_metric) scatter_plot = gr.Plot( value=create_scatter_plot(start_metric), label="Speaker Population vs. Metric", ) world_map = gr.Plot( value=create_world_map(start_metric), label="World Map", container=False, elem_classes="fullwidth-plot", ) def update_model_type(model_type_choice): model_type = {"Text-to-Text": "t2t", "Speech-to-Text": "s2t"}[model_type_choice] return create_metric_selector(model_type), create_leaderboard_df(model_type) model_type.change( fn=update_model_type, inputs=model_type, outputs=[metric, leaderboard_df], ) def update_component(fn, model_type_choice, metric_choice): model_type = {"Text-to-Text": "t2t", "Speech-to-Text": "s2t"}[model_type_choice] metric = [m for m in METRICS[model_type] if m["display_name"] == metric_choice][ 0 ] return fn(metric) metric.change( fn=partial(update_component, create_model_comparison_plot), inputs=[model_type, metric], outputs=model_comparison_plot, ) metric.change( fn=partial(update_component, create_scatter_plot), inputs=[model_type, metric], outputs=scatter_plot, ) metric.change( fn=partial(update_component, create_world_map), inputs=[model_type, metric], outputs=world_map, ) with gr.Accordion("Methodology", open=False): gr.Markdown( """ ### Benchmark Data We use the [FLORES+](https://huggingface.co/datasets/openlanguagedata/flores_plus) dataset for evaluation, which contains parallel text in over 200 languages, as well as topic labels for each sentence. Where FLORES+ includes multiple scripts for one language, we use only the most common one. Population and speaker data and language code resolution are from Unicode [CLDR](https://github.com/unicode-org/cldr) via the [langcodes](https://github.com/rspeer/langcodes) package. ### AI Models We use [OpenRouter](https://openrouter.ai/) to access all relevant AI models via a unified API. ### Evaluation Tasks Our benchmark includes three core tasks to assess different aspects of language understanding: 1. **Machine Translation**: Models translate text _from_ the evaluated language _to_ a fixed set of target languages. The set of target languages is representative of global speaker populations. Performance is measured using: - [BLEU Score](https://huggingface.co/metrics/bleu): Measures n-gram precision with a brevity penalty - [ChrF Score](https://huggingface.co/metrics/chrf): Character-level F-score that better captures morphological variations 2. **Text Classification**: Models classify text into predefined topics after being shown examples. We: - Group sentences by URL into paragraphs with the same topic - Use the 5 most common topics, encoded as numbers rather than English labels - Provide 5 examples of each topic as few-shot examples - Test the model's ability to classify new text - Report accuracy as the primary metric 3. **Masked Language Modeling**: Models predict missing portions of text (marked with ``). We: - Mask approximately 5% of each sentence at a random position - Provide 10 examples of complete sentences paired with masked versions in a few-shot setting - Evaluate predictions using ChrF score against the original text The overall performance score combines metrics from all tasks to provide a holistic assessment of model capabilities across languages. """ ) for lang in tqdm(languages[:20], desc="Generating pages"): with demo.route(lang['language_name'], f"/{lang['bcp_47']}"): gr.Button("← Back to Main Dashboard", link="/") url = f"hf.co/spaces/datenlaborbmz/ai-language-monitor?lang={lang['bcp_47']}" gr.Markdown( f'''

{lang['language_name']}

''', sanitize_html=False ) # Language overview section with gr.Row(): with gr.Column(scale=2): gr.Markdown(f""" ## Language Overview - **Native name**: {lang.get('native_name', 'N/A')} - **Language family**: {lang.get('language_family', 'N/A')} - **BCP-47 code**: `{lang['bcp_47']}` - **ISO 639-3 code**: `{lang.get('iso_639_3', 'N/A')}` - **Number of speakers**: {format_number(lang['speakers'])} - **Script**: {lang.get('script', 'N/A')} - **CommonVoice hours**: {round(lang.get('commonvoice_hours', 0) or 0)} """) # Resource links resource_links = [] if lang.get('commonvoice_locale'): resource_links.append(f"[CommonVoice Dataset](https://commonvoice.mozilla.org/{lang['commonvoice_locale']})") if lang.get('wikipedia_code'): resource_links.append(f"[Wikipedia](https://{lang['wikipedia_code']}.wikipedia.org)") if lang.get('bcp_47'): resource_links.append(f"[FLORES+ Dataset](https://huggingface.co/datasets/openlanguagedata/flores_plus/viewer/all/{lang['bcp_47']})") if resource_links: gr.Markdown("### Resources\n" + "\n".join(resource_links)) with gr.Column(scale=3): # Create a mini-map showing where the language is spoken country_data = {} if "population" in lang: for country_code, speakers in lang["population"].items(): try: country = pycountry.countries.get(alpha_2=country_code) if country: country_data[country.alpha_3] = speakers / lang["speakers"] except (KeyError, AttributeError): continue locations = list(country_data.keys()) values = list(country_data.values()) if locations: fig = go.Figure(data=go.Choropleth( locations=locations, z=values, locationmode="ISO-3", colorscale="Blues", marker_line_color='white', marker_line_width=0.5, colorbar_title="Speaker %" )) fig.update_layout( title_text=f"Distribution of {lang['language_name']} Speakers", geo=dict( showframe=False, showcoastlines=True, projection_type='natural earth' ), height=300, margin={"r":0,"t":30,"l":0,"b":0} ) gr.Plot(value=fig) else: gr.Markdown("*Geographic data not available*") # Performance metrics section gr.Markdown("## AI Model Performance") with gr.Row(): with gr.Column(): # Create metrics dashboard for this language metrics_data = [] for metric_key, display_name in [ ("t2t_score", "Overall Text Performance"), ("mt_bleu", "Translation (BLEU)"), ("mt_chrf", "Translation (ChrF)"), ("cls_acc", "Classification"), ("mlm_chrf", "Masked Language Modeling"), ("s2t_score", "Overall Speech Performance"), ("asr_wer", "Speech Recognition (WER)"), ("asr_chrf", "Speech Recognition (ChrF)") ]: if metric_key in lang and lang[metric_key] is not None: value = lang[metric_key] color = "green" if value > 0.5 else "orange" if value > 0.25 else "red" # For WER, lower is better, so invert the color logic if metric_key == "asr_wer": color = "green" if value < 0.3 else "orange" if value < 0.6 else "red" metrics_data.append({ "Metric": display_name, "Value": round(value, 3), "Visual": make_colored_bar(value if metric_key != "asr_wer" else 1 - value) }) if metrics_data: gr.DataFrame( pd.DataFrame(metrics_data), label=f"Performance Metrics for {lang['language_name']}", show_search=False ) else: gr.Markdown("*No performance metrics available*") # Model comparison table gr.Markdown("## Model Comparison") with gr.Row(): models_data = [] for score in lang["scores"]: if score.get("t2t_score") is not None: model_name = score["model"].split("/")[-1] models_data.append({ "Model": model_name, "Overall": round(score.get("t2t_score", 0), 3), "Translation": round(score.get("mt_chrf", 0), 3), "Classification": round(score.get("cls_acc", 0), 3), "Lang Model": round(score.get("mlm_chrf", 0), 3), "Speech": round(score.get("asr_chrf", 0), 3) if "asr_chrf" in score else "N/A" }) if models_data: df = pd.DataFrame(models_data).sort_values("Overall", ascending=False) gr.DataFrame( df, label=f"Model Performance on {lang['language_name']}", show_search=False ) else: gr.Markdown("*No model comparison data available*") # Performance comparison with similar languages if lang.get("language_family"): gr.Markdown("## Comparison with Related Languages") # Find related languages related_langs = [l for l in languages if l.get("language_family") == lang["language_family"] and l["t2t_score"] is not None] related_langs = sorted(related_langs, key=lambda x: x["t2t_score"], reverse=True)[:10] if len(related_langs) > 1: lang_names = [l["language_name"] for l in related_langs] t2t_scores = [l["t2t_score"] for l in related_langs] fig = px.bar( x=lang_names, y=t2t_scores, labels={"x": "Language", "y": "Text-to-Text Score"}, title=f"Performance Across {lang['language_family']} Languages" ) # Highlight the current language for i, name in enumerate(lang_names): if name == lang["language_name"]: fig.data[0].marker.color = ["lightblue"] * i + ["orange"] + ["lightblue"] * (len(lang_names) - i - 1) fig.update_layout(height=400) gr.Plot(value=fig) demo.launch()