import asyncio import json import os import re from datetime import date from os import getenv import evaluate import pandas as pd import requests from aiolimiter import AsyncLimiter from dotenv import load_dotenv from joblib.memory import Memory from langcodes import Language, standardize_tag from language_data.population_data import LANGUAGE_SPEAKING_POPULATION from openai import AsyncOpenAI from requests import get from rich import print from tqdm.asyncio import tqdm_asyncio from transformers import NllbTokenizer # config models = [ "openai/gpt-4o-mini", # 0.6$/M tokens # "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev "meta-llama/llama-3.3-70b-instruct", # 0.3$/M tokens "mistralai/mistral-small-24b-instruct-2501", # 0.14$/M tokens "google/gemini-2.0-flash-001", # 0.4$/M tokens # "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content" "deepseek/deepseek-chat", # 0.9$/M tokens "microsoft/phi-4", # 0.07$/M tokens ] fast_model = "meta-llama/llama-3.3-70b-instruct" n_sentences = 30 # setup load_dotenv() client = AsyncOpenAI( base_url="https://openrouter.ai/api/v1", api_key=getenv("OPENROUTER_API_KEY"), ) cache = Memory(location=".cache", verbose=0).cache bleu = evaluate.load("bleu") chrf = evaluate.load("chrf") tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") rate_limit = AsyncLimiter(max_rate=20, time_period=1) # load general language data languages = { lang: pop for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() if not re.match(r".*-[A-Z]{2}$", lang) } languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"]) languages["language_name"] = languages["bcp_47"].apply( lambda x: Language.get(x).display_name() ) # load script codes and names scripts = pd.read_csv("data/ScriptCodes.csv").rename( columns={"Code": "iso15924", "English Name": "script_name"} ) def population(bcp_47): items = { re.sub(r"^[a-z]+-", "", lang): pop for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang) } return items def script_name(iso15924): return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0] def aggregate_flores_paths(flores_paths): # takes a list of paths from the same language but different scripts # returns the one with the largest writing population if len(flores_paths) == 1: return flores_paths.values[0] populations = [ Language.get(standardize_tag(x, macro=True)).writing_population() for x in flores_paths.values ] return flores_paths.values[populations.index(max(populations))] # load benchmark languages and scripts benchmark_dir = "data/floresp-v2.0-rc.3/dev" benchmark_languages = pd.DataFrame( [f.split(".")[1] for f in os.listdir(benchmark_dir)], columns=["flores_path"], ) benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply( lambda x: standardize_tag(x, macro=True), ) # ignore script (language is language) benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply( lambda x: re.sub(r"-[A-Z][a-z]+$", "", x) ) benchmark_languages = ( benchmark_languages.groupby("bcp_47") .agg({"flores_path": aggregate_flores_paths}) .reset_index() ) # load CommonVoice stats @cache # cache for 1 day def get_commonvoice_stats(date: date): return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json() commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename( columns={"locale": "commonvoice_locale", "validatedHours": "commonvoice_hours"} )[["commonvoice_locale", "commonvoice_hours"]] # ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK) commonvoice_stats["bcp_47"] = commonvoice_stats["commonvoice_locale"].apply( lambda x: re.sub(r"-[A-Z]{2}$", "", x) ) commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply( lambda x: standardize_tag(x, macro=True) ) # this does not really seem to get macrolanguages though, e.g. not for Quechua commonvoice_stats = ( commonvoice_stats.groupby("bcp_47") .agg({"commonvoice_hours": "sum", "commonvoice_locale": "first"}) .reset_index() ) # merge data languages = pd.merge( languages, benchmark_languages, on="bcp_47", how="left" ) # "left" because keep it simple for now languages = pd.merge( languages, commonvoice_stats, on="bcp_47", how="left" ) # "left" because keep it simple for now languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"]) languages = languages.sort_values(by="speakers", ascending=False).iloc[:10] # sample languages to translate to target_languages = languages[languages["in_benchmark"]].sample( n=n_sentences, weights="speakers", replace=True, random_state=42 ) # sample languages to analyze with all models detailed_languages = languages[languages["in_benchmark"]].sample(n=1, random_state=42) # utils def check_rate_limit(): print( requests.get( "https://openrouter.ai/api/v1/auth/key", headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, ).json() ) models = requests.get( "https://openrouter.ai/api/v1/models", headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, ).json()["data"] model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None) print(model) @cache async def complete(**kwargs): async with rate_limit: response = await client.chat.completions.create(**kwargs) if not response.choices: raise Exception(response) return response def load_sentences(language): return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines() @cache async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr): original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[ 0 ] target_language = target_languages.iloc[sentence_nr] original_sentence = load_sentences(original_language)[sentence_nr].strip() target_sentence = load_sentences(target_language)[sentence_nr].strip() script = script_name(target_language.flores_path.split("_")[1]) reply = await complete( model=model, messages=[ { "role": "user", "content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}", } ], temperature=0, max_tokens=1024, ) prediction = reply.choices[0].message.content.strip() bleu_score = bleu.compute( predictions=[prediction], references=[target_sentence], tokenizer=tokenizer.tokenize, ) chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence]) return { "model": model, "bcp_47": original_language["bcp_47"], "bleu": bleu_score["bleu"], "chrf": chrf_score["score"], "sentence_nr": sentence_nr, } metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t") @cache async def classify_and_evaluate(model, language_bcp_47, nr): language = languages[languages["bcp_47"] == language_bcp_47].iloc[0] sentences = pd.DataFrame(load_sentences(language), columns=["text"]) sentences = pd.concat([metadata, sentences], axis=1) sentences = sentences.dropna(subset=["topic"]) sentences["topic"] = sentences["topic"].str.lower() paragraphs = ( sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index() ) top_topics = paragraphs.value_counts("topic").head(5).index paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)] examples = pd.concat( [ paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42) for t in top_topics ] ).sample(frac=1, random_state=42) test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample( frac=1, random_state=42 ) test_paragraph = test_paragraphs.iloc[nr] messages = [ { "role": "system", "content": f"Categories: {'; '.join(examples['topic'].drop_duplicates())}.", } ] for example in examples.itertuples(): messages += [ {"role": "user", "content": example.text}, {"role": "assistant", "content": example.topic}, ] reply = await complete( model=model, messages=[ *messages, { "role": "user", "content": test_paragraph.text, }, ], temperature=0, max_tokens=1024, ) prediction = reply.choices[0].message.content.strip() return { "model": model, "bcp_47": language["bcp_47"], "true": test_paragraph.topic, "pred": prediction, "sentence_nr": nr, } def mean(lst): return sum(lst) / len(lst) if lst else 0 # evaluation! async def main(): print("evaluate translation") translation_scores = [ translate_and_evaluate(model, original_language.bcp_47, i) for i in range(n_sentences) for original_language in languages.itertuples() for model in models if original_language.in_benchmark and ( model == fast_model or original_language.bcp_47 in detailed_languages.bcp_47.values ) ] translation_scores = await tqdm_asyncio.gather(*translation_scores, miniters=1) print("evaluate classification") classification_scores = [ classify_and_evaluate(model, language.bcp_47, i) for i in range(n_sentences) for language in languages.itertuples() for model in models if language.in_benchmark and (model == fast_model or language.bcp_47 in detailed_languages.bcp_47.values) ] classification_scores = await tqdm_asyncio.gather( *classification_scores, miniters=1 ) results = [] for language in languages.itertuples(): results_for_language = [] for model in models: translations_for_model = [ score for score in translation_scores if score["bcp_47"] == language.bcp_47 and score["model"] == model ] classifications_for_model = [ score for score in classification_scores if score["bcp_47"] == language.bcp_47 and score["model"] == model ] accuracy = mean([s["true"] == s["pred"] for s in classifications_for_model]) if translations_for_model: results_for_language.append( { "model": model, "bleu": mean([s["bleu"] for s in translations_for_model]), "chrf": mean([s["chrf"] for s in translations_for_model]), "accuracy": accuracy, } ) if results_for_language: results.append( { "language_name": language.language_name, "bcp_47": language.bcp_47, "speakers": language.speakers, "scores": results_for_language, "bleu": mean([s["bleu"] for s in results_for_language]), "chrf": mean([s["chrf"] for s in results_for_language]), "accuracy": mean([s["accuracy"] for s in results_for_language]), "commonvoice_hours": language.commonvoice_hours if not pd.isna(language.commonvoice_hours) else None, "commonvoice_locale": language.commonvoice_locale if not pd.isna(language.commonvoice_locale) else None, "population": population(language.bcp_47), } ) with open("results.json", "w") as f: json.dump(results, f, indent=2, ensure_ascii=False) if __name__ == "__main__": # check_rate_limit() asyncio.run(main())