David Pomerenke
Run on 40 languages, additional models
260c1a3
raw
history blame
9.23 kB
import random
from functools import partial
import evaluate
import pandas as pd
import sentencepiece as spm
from datasets_.flores import flores_sentences
from datasets_.mmlu import load_mmlu
from joblib.memory import Memory
from languages import languages, script_name
from models import complete, transcribe
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = spm.SentencePieceProcessor(
model_file="data/spbleu/flores200_sacrebleu_tokenizer_spm.model"
)
# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
frac=1, weights="speakers", replace=True, random_state=42
)
@cache
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
target_language = target_languages.iloc[sentence_nr]
match mode:
case "from":
pass
case "to":
original_language, target_language = target_language, original_language
original_sentence = flores_sentences(original_language)[sentence_nr].strip()
target_sentence = flores_sentences(target_language)[sentence_nr].strip()
script = script_name(target_language.flores_path.split("_")[1])
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
}
],
temperature=0,
max_tokens=1024,
)
prediction = reply.choices[0].message.content.strip()
if prediction.strip():
bleu_score = bleu.compute(
predictions=[prediction],
references=[target_sentence],
tokenizer=tokenizer.tokenize,
)
else:
bleu_score = {"bleu": 0}
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
return [
{
"model": model,
"bcp_47": bcp_47,
"task": f"translation_{mode}",
"metric": metric,
"score": score,
"sentence_nr": sentence_nr,
}
for metric, score in (
("bleu", bleu_score["bleu"]),
("chrf", chrf_score["score"] / 100),
)
]
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")
@cache
async def classify_and_evaluate(model, bcp_47, nr):
language = languages[languages["bcp_47"] == bcp_47].iloc[0]
sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
sentences = pd.concat([metadata, sentences], axis=1)
sentences = sentences.dropna(subset=["topic"])
sentences["topic"] = sentences["topic"].str.lower()
paragraphs = (
sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index()
)
top_topics = paragraphs.value_counts("topic").head(5).index
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
examples = pd.concat(
[
paragraphs[paragraphs["topic"] == t].sample(n=1, random_state=42)
for t in top_topics
]
).sample(frac=1, random_state=nr)
test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample(
frac=1, random_state=42
)
test_paragraph = test_paragraphs.iloc[nr]
def format_prompt(text):
return f"{text}\n\nTopic: {'|'.join(top_topics)}?"
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": format_prompt(example.text)},
{"role": "assistant", "content": example.topic},
]
# some models have poor tokenization for some languages, and the prompt for this task is relatively long, so it sometimes exceeds the context window
# this is not just to blame on the context window but mostly on the model's tokenization, so we assign 0 accuracy in this case
try:
reply = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": format_prompt(test_paragraph.text),
},
],
temperature=0,
max_tokens=30,
)
response = reply.choices[0].message.content.strip().lower()
true = test_paragraph.topic
others = [t for t in top_topics if t != true]
acc = int(
response.startswith(true)
or (true in response and not any(o in response for o in others))
)
except Exception as e:
if "`inputs` tokens + `max_new_tokens` must be <= 4097" in str(e):
print(f"Max tokens exceeded for {model} in {bcp_47}")
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": bcp_47,
"task": "classification",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
def corrupt_sentence(sentence):
# replace 5% of the sentence with <mask>
mask_length = round(len(sentence) * 0.05)
start = random.randint(0, len(sentence) - mask_length)
end = start + mask_length
return sentence[:start] + "<mask>" + sentence[end:]
@cache
async def mlm_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
examples = sentences.sample(n=10, random_state=42)
test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
frac=1, random_state=42
)
test_sentence = test_sentences.iloc[nr]
messages = []
for example in examples.itertuples():
messages += [
{"role": "user", "content": example.corrupt_text},
{"role": "assistant", "content": example.text},
]
reply = await complete(
model=model,
messages=[
*messages,
{
"role": "user",
"content": test_sentence.corrupt_text,
},
],
temperature=0,
max_tokens=1024,
)
prediction = reply.choices[0].message.content.strip()
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
return [
{
"model": model,
"bcp_47": language["bcp_47"],
"task": "language_modeling",
"metric": "chrf",
"score": chrf_score["score"] / 100,
"sentence_nr": nr,
}
]
@cache
async def mmlu_and_evaluate(model, language_bcp_47, nr):
ds_name, examples, task = load_mmlu(language_bcp_47, nr)
if not task:
return []
def format_item(item):
return f"""{item["question"]}
A: {item["choices"][0]}
B: {item["choices"][1]}
C: {item["choices"][2]}
D: {item["choices"][3]}
A|B|C|D?"""
messages = []
for example in examples:
messages += [
{"role": "user", "content": format_item(example)},
{"role": "assistant", "content": example["answer"]},
]
messages += [{"role": "user", "content": format_item(task)}]
try:
reply = await complete(
model=model,
messages=messages,
temperature=0,
max_tokens=1,
)
acc = int(reply.choices[0].message.content[:1].strip() == task["answer"])
except Exception as e:
if "ResponsibleAIPolicyViolation" in str(e):
acc = 0
else:
raise e
return [
{
"model": model,
"bcp_47": language_bcp_47,
"task": "mmlu",
"metric": "accuracy",
"score": acc,
"sentence_nr": nr,
}
]
@cache
async def transcribe_and_evaluate(model, language_bcp_47, nr):
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
fleurs = pd.read_csv(
f"data/fleurs/{language.fleurs_tag}/dev.tsv",
sep="\t",
names=[
"id",
"fname",
"raw_transcription",
"transcription",
"words",
"id2",
"gender",
],
)
item = fleurs.iloc[nr]
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
pred = await transcribe(path, model=model)
wer_score = wer.compute(predictions=[pred], references=[item.transcription])
return [
{
"model": model,
"bcp_47": language["bcp_47"],
"task": "asr",
"metric": "wer",
"score": wer_score,
"sentence_nr": nr,
}
]
tasks = [
partial(translate_and_evaluate, mode="from"),
partial(translate_and_evaluate, mode="to"),
classify_and_evaluate,
# mlm_and_evaluate,
mmlu_and_evaluate,
# transcribe_and_evaluate,
]