David Pomerenke
Use langcodes for language matching
d5fc8b3
raw
history blame
8.34 kB
import asyncio
import json
import os
import re
from os import getenv
import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer
from datetime import date
from requests import get
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
from langcodes import standardize_tag, Language
# config
models = [
"openai/gpt-4o-mini", # 0.6$/M tokens
# "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive
"meta-llama/llama-3.3-70b-instruct", # 0.3$/M tokens
"mistralai/mistral-small-24b-instruct-2501", # 0.14$/M tokens
"google/gemini-2.0-flash-001", # 0.4$/M tokens
# "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
"deepseek/deepseek-chat", # 0.9$/M tokens
"microsoft/phi-4", # 0.07$/M tokens
]
fast_model = "meta-llama/llama-3.3-70b-instruct"
n_sentences = 30
# setup
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
bertscore = evaluate.load("bertscore")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
rate_limit = AsyncLimiter(max_rate=20, time_period=1)
def reorder(language_name):
if "," in language_name and "(" not in language_name:
return language_name.split(",")[1] + " " + language_name.split(",")[0]
return language_name
# load general language data
languages = {
lang: pop
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
if not re.match(r".*-[A-Z]{2}$", lang)
}
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
languages["name"] = languages["bcp_47"].apply(lambda x: Language.get(x).display_name())
# load script codes and names
scripts = pd.read_csv("data/ScriptCodes.csv").rename(columns={"Code": "iso15924", "English Name": "script_name"})
def script_name(iso15924):
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]
# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
[f.split(".")[1].split("_", 1) for f in os.listdir(benchmark_dir)],
columns=["iso639_3", "iso15924"],
)
benchmark_languages["bcp_47"] = benchmark_languages.apply(
lambda row: standardize_tag(row["iso639_3"] + "-" + row["iso15924"], macro=True),
axis=1,
)
# ignore script (language is language)
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
lambda x: re.sub(r"-[A-Z][a-z]+$", "", x)
)
benchmark_languages = (
benchmark_languages.groupby("bcp_47")
.agg({"iso639_3": "first", "iso15924": "first"})
.reset_index()
)
# load CommonVoice stats
@cache # cache for 1 day
def get_commonvoice_stats(date: date):
return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json()
commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename(
columns={"locale": "bcp_47", "validatedHours": "commonvoice_hours"}
)[["bcp_47", "commonvoice_hours"]]
# ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK)
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply(
lambda x: re.sub(r"-[A-Z]{2}$", "", x)
)
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply(
lambda x: standardize_tag(x, macro=True)
) # this does not really seem to get macrolanguages though, e.g. not for Quechua
commonvoice_stats = commonvoice_stats.groupby("bcp_47").sum().reset_index()
# merge data
languages = pd.merge(
languages, benchmark_languages, on="bcp_47", how="left"
) # "left" because keep it simple for now
languages = pd.merge(
languages, commonvoice_stats, on="bcp_47", how="left"
) # "left" because keep it simple for now
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])
languages = languages.sort_values(by="speakers", ascending=False)
languages = languages.iloc[:10]
# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].sample(n=3, random_state=42)
# utils
def check_rate_limit():
print(
requests.get(
"https://openrouter.ai/api/v1/auth/key",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()
)
models = requests.get(
"https://openrouter.ai/api/v1/models",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()["data"]
model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None)
print(model)
@cache
async def complete(**kwargs):
async with rate_limit:
response = await client.chat.completions.create(**kwargs)
if not response.choices:
raise Exception(response)
return response
async def translate(model, target_language, sentence):
script = script_name(target_language.iso15924)
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language.name} language; use the {script} script; reply only with the translation:\n\n{sentence}",
}
],
temperature=0,
max_tokens=1024,
)
return reply.choices[0].message.content
def mean(l):
return sum(l) / len(l) if l else 0
def load_sentences(language):
return open(f"{benchmark_dir}/dev.{language.iso639_3}_{language.iso15924}").readlines()
# evaluation!
async def main():
results = []
for language in list(languages.itertuples()):
scores = []
if language.in_benchmark:
original_sentences = load_sentences(language)[:n_sentences]
for model in models:
if (
model != fast_model
and language.bcp_47 not in detailed_languages.bcp_47.values
):
continue
predictions = [
translate(
model,
language,
sentence,
)
for sentence, language in zip(
original_sentences, target_languages.itertuples()
)
]
predictions = await tqdm_asyncio.gather(*predictions, miniters=1, desc=f"{language.name} {model.split('/')[0]}")
target_sentences = [
load_sentences(lang)[i]
for i, lang in enumerate(target_languages.itertuples())
]
metrics_bleu = bleu.compute(
predictions=predictions,
references=target_sentences,
tokenizer=tokenizer.tokenize,
)
# metrics_bert = bertscore.compute(
# predictions=predictions,
# references=target_sentences,
# model_type="distilbert-base-uncased",
# )
scores.append(
{
"model": model,
"bleu": metrics_bleu["bleu"],
# "bert_score": mean(metrics_bert["f1"]),
}
)
results.append(
{
"language_name": language.name,
"bcp_47": language.bcp_47,
"speakers": language.speakers if not pd.isna(language.speakers) else 0,
"scores": scores,
"bleu": mean([s["bleu"] for s in scores]) if scores else None,
# "bert_score": mean([s["bert_score"] for s in scores]),
"commonvoice_hours": language.commonvoice_hours,
}
)
with open("results.json", "w") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
if __name__ == "__main__":
# check_rate_limit()
asyncio.run(main())