evals-for-every-language / languagebench.py
David Pomerenke
Fix speed issues
9aa08d7
raw
history blame
4.68 kB
import asyncio
import json
import os
import random
from os import getenv
import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
# config
models = [
"openai/gpt-4o-mini",
"anthropic/claude-3.5-sonnet",
"meta-llama/llama-3.1-70b-instruct", # lots of slow repetitions for LRLs
"mistralai/mistral-nemo",
"google/gemini-flash-1.5", # very fast
"qwen/qwen-2.5-72b-instruct", # somewhat slow
]
original_language = "eng_Latn"
dataset = "floresp-v2.0-rc.3/dev"
random.seed(42)
target_languages = [f.split(".")[1] for f in os.listdir(dataset)]
target_languages = random.choices(target_languages, k=15) + ["deu_Latn"]
# setup
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("sacrebleu")
rate_limit = AsyncLimiter(max_rate=2, time_period=0.1)
def check_rate_limit():
print(
requests.get(
"https://openrouter.ai/api/v1/auth/key",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()
)
print(
requests.get(
"https://openrouter.ai/api/v1/models",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()
)
@cache
async def complete(**kwargs):
async with rate_limit:
response = await client.chat.completions.create(**kwargs)
return response
def reorder(language_name):
if "," in language_name and "(" not in language_name:
return language_name.split(",")[1] + " " + language_name.split(",")[0]
return language_name
language_names = pd.read_csv("LanguageCodes.tab", sep="\t")
language_names["Name"] = language_names["Name"].apply(reorder)
language_stats = pd.read_csv("languages.tsv", sep="\t")
script_names = pd.read_csv("ScriptCodes.csv")
@cache
async def translate(model, target_language, target_script, sentence):
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}",
}
],
temperature=0.1,
max_tokens=1024,
)
return reply.choices[0].message.content
def get_language_stats(language_code):
lang, script = language_code.split("_")
stats = language_stats[language_stats["iso639_3"] == lang]
if not stats.empty:
stats = stats.iloc[0].to_dict()
else:
stats = dict()
stats["script"] = script_names[script_names["Code"] == script]["English Name"].iloc[
0
]
stats["name"] = language_names[language_names["LangID"] == lang]["Name"].iloc[0]
return stats
async def main():
n = 30
results = []
original_sentences = open(f"{dataset}/dev.{original_language}").readlines()
for target_language in target_languages:
if target_language == original_language:
continue
target_sentences = open(f"{dataset}/dev.{target_language}").readlines()
for model in models:
stats = get_language_stats(target_language)
print(f"{model} -> {stats['name']}")
predictions = [
translate(model, stats["name"], stats["script"], sentence)
for sentence in original_sentences[:n]
]
predictions = await tqdm_asyncio.gather(*predictions, miniters=1)
metrics = bleu.compute(
predictions=predictions,
references=target_sentences[:n],
tokenize="char",
)
results.append(
{
"model": model,
"original_language": original_language,
"target_language": target_language,
"target_language_name": stats["name"],
"speakers": int(stats.get("maxSpeakers", 0)),
"bleu": metrics["score"],
}
)
with open("results.json", "w") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
pd.DataFrame(results).groupby("target_language_name").agg(
{"bleu": "mean", "speakers": "mean"}
).reset_index().to_json("results_summary.json", indent=2, orient="records")
if __name__ == "__main__":
# check_rate_limit()
asyncio.run(main())