David Pomerenke
Only show top languages in bar chart
7f54946
raw
history blame
15.5 kB
import json
import gradio as gr
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
import pycountry
with open("results.json") as f:
results = json.load(f)
def mean(lst):
return sum(lst) / len(lst)
def create_leaderboard_df(results):
# Sort languages by average BLEU to determine resource categories
langs_with_bleu = [lang for lang in results if lang["bleu"] is not None]
sorted_langs = sorted(langs_with_bleu, key=lambda x: x["bleu"], reverse=True)
n_langs = len(sorted_langs)
high_cutoff = n_langs // 4 # top 25%
low_cutoff = n_langs - n_langs // 4 # bottom 25%
# Create sets of languages for each category
high_resource = {lang["language_name"] for lang in sorted_langs[:high_cutoff]}
low_resource = {lang["language_name"] for lang in sorted_langs[low_cutoff:]}
# Get all model scores with categorization
model_scores = {}
for lang in results:
category = (
"High-Resource"
if lang["language_name"] in high_resource
else "Low-Resource"
if lang["language_name"] in low_resource
else "Mid-Resource"
)
for score in lang["scores"]:
model = score["model"]
if model not in model_scores:
model_scores[model] = {
"High-Resource": [],
"Mid-Resource": [],
"Low-Resource": [],
}
model_scores[model][category].append(score["bleu"])
# Calculate average scores and create DataFrame
leaderboard_data = []
for model, categories in model_scores.items():
# Calculate averages for each category
high_avg = (
round(mean(categories["High-Resource"]), 3)
if categories["High-Resource"]
else 0
)
mid_avg = (
round(mean(categories["Mid-Resource"]), 3)
if categories["Mid-Resource"]
else 0
)
low_avg = (
round(mean(categories["Low-Resource"]), 3)
if categories["Low-Resource"]
else 0
)
# Calculate overall average
all_scores = (
categories["High-Resource"]
+ categories["Mid-Resource"]
+ categories["Low-Resource"]
)
overall_avg = round(sum(all_scores) / len(all_scores), 3)
model_name = model.split("/")[-1]
leaderboard_data.append(
{
"Model": f"[{model_name}](https://openrouter.ai/{model})",
"Overall BLEU": overall_avg,
"High-Resource BLEU": high_avg,
"Mid-Resource BLEU": mid_avg,
"Low-Resource BLEU": low_avg,
"Languages Tested": len(all_scores),
}
)
# Sort by overall BLEU
df = pd.DataFrame(leaderboard_data)
df = df.sort_values("Overall BLEU", ascending=False)
# Add rank and medals
df["Rank"] = range(1, len(df) + 1)
df["Rank"] = df["Rank"].apply(
lambda x: "🥇" if x == 1 else "🥈" if x == 2 else "🥉" if x == 3 else str(x)
)
# Reorder columns
df = df[
[
"Rank",
"Model",
"Overall BLEU",
"High-Resource BLEU",
"Mid-Resource BLEU",
"Low-Resource BLEU",
"Languages Tested",
]
]
return gr.DataFrame(
value=df,
label="Model Leaderboard",
show_search=False,
datatype=[
"number",
"markdown",
"number",
"number",
"number",
"number",
"number",
],
)
def create_model_comparison_plot(results):
top_languages = sorted(results, key=lambda x: x["speakers"], reverse=True)[:10]
scores_flat = [
{"language": lang["language_name"], "model": score["model"], "bleu": score["bleu"]}
for lang in top_languages
for score in lang["scores"]
]
df = pd.DataFrame(scores_flat)
fig = px.bar(df, x="language", y="bleu", color="model", barmode="group")
fig.update_layout(
title="BLEU Scores by Model and Language",
xaxis_title=None,
yaxis_title="BLEU Score",
barmode="group",
height=500,
legend=dict(
orientation="h", # horizontal orientation
yanchor="bottom",
y=-0.3, # position below plot
xanchor="center",
x=0.5, # center horizontally
),
)
return fig
def create_language_stats_df(results):
# Create a list to store flattened data
flat_data = []
for lang in results:
# Find the best model and its BLEU score
best_score = max(
lang["scores"] or [{"bleu": None, "model": None}], key=lambda x: x["bleu"]
)
model = best_score["model"]
model_name = model.split("/")[-1] if model else "N/A"
model_link = (
f"<a href='https://openrouter.ai/{model}' style='text-decoration: none; color: inherit;'>{model_name}</a>"
if model
else "N/A"
)
commonvoice_link = (
f"<!--{lang['commonvoice_hours']:07} (for sorting)--> <a href='https://commonvoice.mozilla.org/{lang['commonvoice_locale']}/speak' style='text-decoration: none; color: inherit;'>🎙️ {lang['commonvoice_hours']}</a>"
if lang["commonvoice_hours"]
else "N/A"
)
row = {
"Language": f"**{lang['language_name']}**",
"Speakers (M)": round(lang["speakers"] / 1_000_000, 1),
"Models Tested": len(lang["scores"]),
"Average BLEU": round(lang["bleu"], 3)
if lang["bleu"] is not None
else "N/A",
"Best Model": model_link,
"Best Model BLEU": round(best_score["bleu"], 3)
if best_score["bleu"] is not None
else "N/A",
"CommonVoice Hours": commonvoice_link,
}
flat_data.append(row)
df = pd.DataFrame(flat_data)
return gr.DataFrame(
value=df,
label="Language Results",
show_search="search",
datatype=[
"markdown",
"number",
"number",
"number",
"markdown",
"number",
"markdown",
],
)
def create_scatter_plot(results):
fig = go.Figure()
x_vals = [
lang["speakers"] / 1_000_000 for lang in results if lang["speakers"] >= 10_000
] # Convert to millions
y_vals = [lang["bleu"] for lang in results]
labels = [lang["language_name"] for lang in results]
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="markers+text",
text=labels,
textposition="top center",
hovertemplate="<b>%{text}</b><br>"
+ "Speakers: %{x:.1f}M<br>"
+ "BLEU Score: %{y:.3f}<extra></extra>",
)
)
fig.update_layout(
title=None,
xaxis_title="Number of Speakers (Millions)",
yaxis_title="Average BLEU Score",
height=500,
showlegend=False,
)
# Use log scale for x-axis since speaker numbers vary widely
fig.update_xaxes(type="log")
return gr.Plot(value=fig, label="Speaker population vs BLEU")
def format_number(n):
"""Format number with K/M suffix"""
if n >= 1_000_000:
return f"{n/1_000_000:.1f}M"
elif n >= 1_000:
return f"{n/1_000:.0f}K"
return str(n)
def create_world_map(results):
# Collect all country data
country_data = {}
for lang in results:
if "population" not in lang or lang["bleu"] is None:
continue
for country_code, speakers in lang["population"].items():
try:
# Convert alpha_2 (2-letter) to alpha_3 (3-letter) code
country = pycountry.countries.get(alpha_2=country_code)
if country is None:
continue
iso3_code = country.alpha_3
if iso3_code not in country_data:
country_data[iso3_code] = {
"total_speakers": 0,
"weighted_bleu_sum": 0,
"languages": [],
}
country_data[iso3_code]["total_speakers"] += speakers
country_data[iso3_code]["weighted_bleu_sum"] += speakers * lang["bleu"]
country_data[iso3_code]["languages"].append(
{
"name": lang["language_name"],
"speakers": speakers,
"bleu": lang["bleu"],
}
)
except (KeyError, AttributeError):
# Skip invalid or unrecognized country codes
continue
# Calculate final weighted averages and prepare hover text
countries = []
bleu_scores = []
hover_texts = []
def make_black_bar(value, max_width=10):
filled = int(value * max_width)
return "⬛️" * filled + "⬜️" * (max_width - filled)
def make_colored_bar(value, max_width=10):
"""Create a colored bar using Unicode blocks
🟦 for high values (>0.35)
🟨 for medium values (0.25-0.35)
🟥 for low values (<0.25)
⬜ for empty space
"""
filled = int(value * max_width)
filled = max(0, min(filled, max_width))
empty = max_width - filled
if value > 0.35:
return "🟦" * filled + "⬜" * empty
elif value > 0.25:
return "🟨" * filled + "⬜" * empty
else:
return "🟥" * filled + "⬜" * empty
for country_code, data in country_data.items():
weighted_avg = data["weighted_bleu_sum"] / data["total_speakers"]
try:
country_name = pycountry.countries.get(alpha_3=country_code).name
except AttributeError:
country_name = country_code
# Sort languages by number of speakers
langs = sorted(data["languages"], key=lambda x: x["speakers"], reverse=True)
total_speakers = sum(lang["speakers"] for lang in langs)
# Take top 5 languages and summarize the rest
main_langs = langs[:5]
other_langs = langs[5:]
# Create language rows with bars
lang_rows = []
for lang in main_langs:
percentage = (lang["speakers"] / total_speakers) * 100
speaker_bar = make_black_bar(percentage / 100)
bleu_bar = make_colored_bar((lang["bleu"] - 0.2) / 0.2)
lang_rows.append(
f"<b>{lang['name']}</b><br>"
f"{speaker_bar} {format_number(lang['speakers'])} speakers<br>"
f"{bleu_bar} {lang['bleu']:.3f} BLEU<br>"
)
# Add summary for other languages if any
if other_langs:
other_speakers = sum(lang["speakers"] for lang in other_langs)
other_percentage = (other_speakers / total_speakers) * 100
other_avg_bleu = sum(lang["bleu"] for lang in other_langs) / len(
other_langs
)
speaker_bar = make_black_bar(other_percentage / 100)
bleu_bar = make_colored_bar((other_avg_bleu - 0.2) / 0.2)
lang_rows.append(
f"<b>+{len(other_langs)} other languages</b><br>"
f"{speaker_bar} {format_number(other_speakers)} speakers<br>"
f"{bleu_bar} {other_avg_bleu:.3f} BLEU<br>"
)
# Create overall BLEU visualization
bleu_percentage = (weighted_avg - 0.2) / 0.2 # Scale from 0.2-0.4 to 0-1
overall_bleu_bar = make_colored_bar(bleu_percentage)
hover_text = (
f"<b>{country_name}</b><br><br>"
f"{format_number(data['total_speakers'])} speakers*<br>"
f"{overall_bleu_bar} {weighted_avg:.3f} BLEU<br><br>"
f"<b>Languages:</b><br><br>"
f"{'<br>'.join(lang_rows)}"
)
countries.append(country_code)
bleu_scores.append(weighted_avg)
hover_texts.append(hover_text)
# Create the choropleth map
fig = go.Figure(
data=go.Choropleth(
locations=countries,
locationmode="ISO-3",
z=bleu_scores,
text=hover_texts,
hoverinfo="text",
colorscale=[[0, "#ff9999"], [1, "#99ccff"]],
colorbar=dict(
title="BLEU Score",
orientation="h", # horizontal orientation
y=-0.2, # position below map
yanchor="bottom",
len=0.5, # length of colorbar
x=0.5, # center horizontally
xanchor="center",
thickness=20, # make it a bit thicker when horizontal
),
zmin=0.1,
zmax=0.5,
)
)
fig.update_layout(
title=dict(text="BLEU Score by Country", x=0.5, xanchor="center"),
geo=dict(
showframe=True,
showcoastlines=True,
projection_type="equal earth",
showland=True,
landcolor="#f8f9fa",
coastlinecolor="#e0e0e0",
countrycolor="#e0e0e0",
),
height=600,
margin=dict(l=0, r=0, t=30, b=0),
paper_bgcolor="white",
hoverlabel=dict(
bgcolor="beige",
font_size=12,
),
)
return fig
# Create the visualization components
with gr.Blocks(title="AI Language Translation Benchmark") as demo:
gr.Markdown("# AI Language Translation Benchmark")
gr.Markdown(
"Comparing translation performance across different AI models and languages"
)
bar_plot = create_model_comparison_plot(results)
world_map = create_world_map(results)
create_leaderboard_df(results)
gr.Plot(value=bar_plot, label="Model Comparison")
create_language_stats_df(results)
create_scatter_plot(results)
gr.Plot(value=world_map, container=False, elem_classes="fullwidth-plot")
gr.Markdown(
"""
## Methodology
### Dataset
- Using [FLORES-200](https://huggingface.co/datasets/openlanguagedata/flores_plus) evaluation set, a high-quality human-translated benchmark comprising 200 languages
- Each language is tested with the same 100 sentences
- All translations are from the evaluated language to a fixed set of representative languages sampled by number of speakers
- Language statistics sourced from Ethnologue and Wikidata
### Models & Evaluation
- Models accessed through [OpenRouter](https://openrouter.ai/), including fast models of all big labs, open and closed
- **BLEU Score**: Translations are evaluated using the BLEU metric, which measures how similar the AI's translation is to a human reference translation -- higher is better
### Language Categories
Languages are divided into three tiers based on translation difficulty:
- High-Resource: Top 25% of languages by BLEU score (easiest to translate)
- Mid-Resource: Middle 50% of languages
- Low-Resource: Bottom 25% of languages (hardest to translate)
""",
container=True,
)
demo.launch()