|
import asyncio |
|
import json |
|
import os |
|
from os import getenv |
|
|
|
import evaluate |
|
import pandas as pd |
|
import requests |
|
from aiolimiter import AsyncLimiter |
|
from dotenv import load_dotenv |
|
from joblib.memory import Memory |
|
from openai import AsyncOpenAI |
|
from tqdm.asyncio import tqdm_asyncio |
|
from transformers import NllbTokenizer |
|
|
|
|
|
models = [ |
|
"openai/gpt-4o", |
|
"anthropic/claude-3.5-sonnet", |
|
"meta-llama/llama-3.1-405b-instruct", |
|
"mistralai/mistral-large", |
|
|
|
"qwen/qwen-2.5-72b-instruct", |
|
] |
|
fast_model = "anthropic/claude-3.5-sonnet" |
|
n_sentences = 30 |
|
|
|
|
|
load_dotenv() |
|
client = AsyncOpenAI( |
|
base_url="https://openrouter.ai/api/v1", |
|
api_key=getenv("OPENROUTER_API_KEY"), |
|
) |
|
cache = Memory(location=".cache", verbose=0).cache |
|
bleu = evaluate.load("bleu") |
|
bertscore = evaluate.load("bertscore") |
|
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") |
|
rate_limit = AsyncLimiter(max_rate=20, time_period=1) |
|
|
|
|
|
def reorder(language_name): |
|
if "," in language_name and "(" not in language_name: |
|
return language_name.split(",")[1] + " " + language_name.split(",")[0] |
|
return language_name |
|
|
|
|
|
|
|
benchmark_dir = "floresp-v2.0-rc.3/dev" |
|
benchmark_languages = pd.DataFrame( |
|
[f.split(".")[1].split("_", 1) for f in os.listdir(benchmark_dir)], |
|
columns=["language_code", "script_code"], |
|
) |
|
|
|
benchmark_languages = benchmark_languages.groupby("language_code").head(1) |
|
benchmark_languages["in_benchmark"] = True |
|
|
|
|
|
language_names = ( |
|
pd.read_csv("LanguageCodes.tab", sep="\t") |
|
.rename(columns={"LangID": "language_code", "Name": "language_name"})[ |
|
["language_code", "language_name"] |
|
] |
|
.assign(language_name=lambda df: df["language_name"].apply(reorder).str.strip()) |
|
) |
|
|
|
|
|
language_stats = ( |
|
pd.read_csv("languages.tsv", sep="\t") |
|
.rename(columns={"iso639_3": "language_code", "maxSpeakers": "speakers"})[ |
|
["language_code", "speakers"] |
|
] |
|
.dropna(subset=["language_code"]) |
|
) |
|
language_stats["speakers"] = pd.to_numeric(language_stats["speakers"], errors="coerce") |
|
ignored_languages = [ |
|
"zho", |
|
"ara", |
|
"pus", |
|
"fas", |
|
"msa", |
|
] |
|
language_stats = language_stats[ |
|
~language_stats["language_code"].isin(ignored_languages) |
|
] |
|
|
|
|
|
script_names = pd.read_csv("ScriptCodes.csv").rename( |
|
columns={"Code": "script_code", "English Name": "script_name"} |
|
)[["script_code", "script_name"]] |
|
|
|
|
|
languages = pd.merge(language_stats, language_names, on="language_code", how="outer") |
|
languages = pd.merge(benchmark_languages, languages, on="language_code", how="outer") |
|
languages = pd.merge(languages, script_names, on="script_code", how="left") |
|
languages["in_benchmark"] = languages["in_benchmark"].fillna(False) |
|
languages = languages.sort_values(by="speakers", ascending=False) |
|
|
|
|
|
|
|
original_languages = languages[languages["in_benchmark"]].sample( |
|
n=n_sentences * 2, weights="speakers", replace=True, random_state=42 |
|
) |
|
|
|
detailed_target_languages = languages[languages["in_benchmark"]].sample( |
|
n=3, random_state=42 |
|
) |
|
|
|
|
|
|
|
def check_rate_limit(): |
|
print( |
|
requests.get( |
|
"https://openrouter.ai/api/v1/auth/key", |
|
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, |
|
).json() |
|
) |
|
models = requests.get( |
|
"https://openrouter.ai/api/v1/models", |
|
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"}, |
|
).json()["data"] |
|
model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None) |
|
print(model) |
|
|
|
|
|
@cache |
|
async def complete(**kwargs): |
|
async with rate_limit: |
|
response = await client.chat.completions.create(**kwargs) |
|
if not response.choices: |
|
raise Exception(response) |
|
return response |
|
|
|
|
|
@cache |
|
async def translate(model, target_language, target_script, sentence): |
|
reply = await complete( |
|
model=model, |
|
messages=[ |
|
{ |
|
"role": "user", |
|
"content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}", |
|
} |
|
], |
|
temperature=0, |
|
max_tokens=1024, |
|
) |
|
return reply.choices[0].message.content |
|
|
|
|
|
def mean(l): |
|
return sum(l) / len(l) if l else 0 |
|
|
|
|
|
def load_sentences(language): |
|
return open( |
|
f"{benchmark_dir}/dev.{language.language_code}_{language.script_code}" |
|
).readlines() |
|
|
|
|
|
|
|
async def main(): |
|
results = [] |
|
for language in languages.itertuples(): |
|
name = ( |
|
language.language_name |
|
if not pd.isna(language.language_name) |
|
else language.language_code |
|
) |
|
print(name) |
|
scores = [] |
|
if language.in_benchmark: |
|
target_sentences = load_sentences(language)[:n_sentences] |
|
for model in models: |
|
if ( |
|
model != fast_model |
|
and language.language_code |
|
not in detailed_target_languages.language_code.values |
|
): |
|
continue |
|
|
|
_original_languages = original_languages[ |
|
original_languages.language_code != language.language_code |
|
].iloc[:n_sentences] |
|
original_sentences = [ |
|
load_sentences(lang)[i] |
|
for i, lang in enumerate(_original_languages.itertuples()) |
|
] |
|
print(model) |
|
predictions = [ |
|
translate( |
|
model, language.language_name, language.script_name, sentence |
|
) |
|
for sentence in original_sentences |
|
] |
|
predictions = await tqdm_asyncio.gather(*predictions, miniters=1) |
|
metrics_bleu = bleu.compute( |
|
predictions=predictions, |
|
references=target_sentences, |
|
tokenizer=tokenizer.tokenize, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
scores.append( |
|
{ |
|
"model": model, |
|
"bleu": metrics_bleu["bleu"], |
|
|
|
} |
|
) |
|
results.append( |
|
{ |
|
"language_name": name, |
|
"language_code": language.language_code, |
|
"speakers": language.speakers if not pd.isna(language.speakers) else 0, |
|
"scores": scores, |
|
"bleu": mean([s["bleu"] for s in scores]) or -0.02, |
|
|
|
} |
|
) |
|
with open("results.json", "w") as f: |
|
json.dump(results, f, indent=2, ensure_ascii=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
asyncio.run(main()) |
|
|