evals-for-every-language / languagebench.py
David Pomerenke
Improve language and script names and speaker data
0e5691e
raw
history blame
4.35 kB
import asyncio
import json
import os
import random
from os import getenv
import evaluate
import pandas as pd
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
from tqdm.auto import tqdm
# config
models = [
"openai/gpt-4o-mini",
"google/gemini-flash-1.5",
"anthropic/claude-3.5-sonnet",
"qwen/qwen-2.5-72b-instruct",
"meta-llama/llama-3.1-8b-instruct",
]
# models = ["gpt-4o-mini"]
original_language = "eng_Latn"
dataset = "floresp-v2.0-rc.3/dev"
random.seed(42)
target_languages = [f.split(".")[1] for f in os.listdir(dataset)]
target_languages = random.choices(target_languages, k=10)
# target_languages = [
# "eng_Latn",
# "deu_Latn",
# "fra_Latn",
# "spa_Latn",
# "cmn_Hans",
# "cmn_Hant",
# ]
# setup
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
# api_key=getenv("OPENAI_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("sacrebleu")
@cache
async def complete(**kwargs):
return await client.chat.completions.create(**kwargs)
def reorder(language_name):
if "," in language_name and "(" not in language_name:
return language_name.split(",")[1] + " " + language_name.split(",")[0]
return language_name
language_names = pd.read_csv("LanguageCodes.tab", sep="\t")
language_names["Name"] = language_names["Name"].apply(reorder)
language_stats = pd.read_csv("languages.tsv", sep="\t")
script_names = pd.read_csv("ScriptCodes.csv")
@cache
async def translate(model, target_language, target_script, sentence):
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to {target_language} (script: {target_script}):\n\n{sentence}",
}
],
temperature=0,
)
return reply.choices[0].message.content
def get_language_stats(language_code):
lang, script = language_code.split("_")
stats = language_stats[language_stats["iso639_3"] == lang]
if not stats.empty:
stats = stats.iloc[0].to_dict()
else:
stats = dict()
stats["script"] = script_names[script_names["Code"] == script]["English Name"].iloc[
0
]
stats["name"] = language_names[language_names["LangID"] == lang]["Name"].iloc[0]
return stats
async def main():
n = 30
results = []
original_sentences = open(f"{dataset}/dev.{original_language}").readlines()
for target_language in target_languages:
if target_language == original_language:
continue
target_sentences = open(f"{dataset}/dev.{target_language}").readlines()
for model in models:
stats = get_language_stats(target_language)
print(f"{model} -> {stats['name']}")
# predictions = [
# await translate(model, stats["name"], stats["script"], sentence)
# for sentence in tqdm(original_sentences[:n])
# ]
predictions = [
translate(model, stats["name"], stats["script"], sentence)
for sentence in tqdm(original_sentences[:n])
]
predictions = await tqdm_asyncio.gather(*predictions)
metrics = bleu.compute(
predictions=predictions,
references=target_sentences[:n],
tokenize="char",
)
results.append(
{
"model": model,
"original_language": original_language,
"target_language": target_language,
"target_language_name": stats["name"],
"speakers": stats.get("maxSpeakers"),
"bleu": metrics["score"],
}
)
with open("results.json", "w") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
# compute mean bleu for each target language
pd.DataFrame(results).groupby("target_language_name").agg(
{"bleu": "mean"}
).reset_index().to_json("results_summary.json", indent=2, orient="records")
if __name__ == "__main__":
asyncio.run(main())