File size: 8,446 Bytes
da6e1bc
731eddd
da6e1bc
 
 
731eddd
 
da6e1bc
 
 
ce2acb0
eaf2d97
da6e1bc
 
 
 
731eddd
 
 
da6e1bc
 
 
 
 
 
731eddd
da6e1bc
731eddd
 
da6e1bc
731eddd
 
 
 
 
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731eddd
 
da6e1bc
 
 
 
731eddd
 
 
da6e1bc
 
 
 
 
 
 
 
731eddd
 
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731eddd
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2acb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731eddd
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731eddd
 
da6e1bc
8274634
ce2acb0
da6e1bc
731eddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import random
from functools import partial

import evaluate
import pandas as pd
import sentencepiece as spm
from datasets_.flores import flores_sentences
from joblib.memory import Memory
from languages import languages, script_name
from models import complete, transcribe
from datasets import load_dataset

cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = spm.SentencePieceProcessor(
    model_file="data/spbleu/flores200_sacrebleu_tokenizer_spm.model"
)

# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
    frac=1, weights="speakers", replace=True, random_state=42
)


@cache
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
    original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
    target_language = target_languages.iloc[sentence_nr]
    match mode:
        case "from":
            pass
        case "to":
            original_language, target_language = target_language, original_language
    original_sentence = flores_sentences(original_language)[sentence_nr].strip()
    target_sentence = flores_sentences(target_language)[sentence_nr].strip()
    script = script_name(target_language.flores_path.split("_")[1])
    reply = await complete(
        model=model,
        messages=[
            {
                "role": "user",
                "content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
            }
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    if prediction.strip():
        bleu_score = bleu.compute(
            predictions=[prediction],
            references=[target_sentence],
            tokenizer=tokenizer.tokenize,
        )
    else:
        bleu_score = {"bleu": 0}
    chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
    return [
        {
            "model": model,
            "bcp_47": bcp_47,
            "task": f"translation_{mode}",
            "metric": metric,
            "score": score,
            "sentence_nr": sentence_nr,
        }
        for metric, score in (
            ("bleu", bleu_score["bleu"]),
            ("chrf", chrf_score["score"] / 100),
        )
    ]


metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")


@cache
async def classify_and_evaluate(model, bcp_47, nr):
    language = languages[languages["bcp_47"] == bcp_47].iloc[0]
    sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
    sentences = pd.concat([metadata, sentences], axis=1)
    sentences = sentences.dropna(subset=["topic"])
    sentences["topic"] = sentences["topic"].str.lower()
    paragraphs = (
        sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index()
    )
    top_topics = paragraphs.value_counts("topic").head(5).index
    paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
    examples = pd.concat(
        [
            paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42)
            for t in top_topics
        ]
    ).sample(frac=1, random_state=42)
    test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample(
        frac=1, random_state=42
    )
    test_paragraph = test_paragraphs.iloc[nr]

    def topic_to_number(topic):
        return top_topics.get_loc(topic)

    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.text},
            {"role": "assistant", "content": str(topic_to_number(example.topic))},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_paragraph.text,
            },
        ],
        temperature=0,
        max_tokens=5,
    )
    try:
        pred = int(reply.choices[0].message.content.strip())
    except ValueError:
        pred = -1
    true = topic_to_number(test_paragraph.topic)
    return [
        {
            "model": model,
            "bcp_47": bcp_47,
            "task": "classification",
            "metric": "accuracy",
            "score": int(pred == true),
            "sentence_nr": nr,
        }
    ]


def corrupt_sentence(sentence):
    # replace 5% of the sentence with <mask>
    mask_length = round(len(sentence) * 0.05)
    start = random.randint(0, len(sentence) - mask_length)
    end = start + mask_length
    return sentence[:start] + "<mask>" + sentence[end:]


@cache
async def mlm_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
    sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
    examples = sentences.sample(n=10, random_state=42)
    test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
        frac=1, random_state=42
    )
    test_sentence = test_sentences.iloc[nr]
    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.corrupt_text},
            {"role": "assistant", "content": example.text},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_sentence.corrupt_text,
            },
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
    return [
        {
            "model": model,
            "bcp_47": language["bcp_47"],
            "task": "language_modeling",
            "metric": "chrf",
            "score": chrf_score["score"] / 100,
            "sentence_nr": nr,
        }
    ]

@cache
def _load_dataset(dataset, subset):
    return load_dataset(dataset, subset)

@cache
async def mmlu_and_evaluate(model, language_bcp_47, nr):
    data = _load_dataset("CohereForAI/Global-MMLU", language_bcp_47)
    item = data["test"][nr]
    def format_item(item):
        return f"""{item['question']}
        
        A: {item['option_a']}
        B: {item['option_b']}
        C: {item['option_c']}
        D: {item['option_d']}
        
        A|B|C|D?"""
    messages = []
    for example in data["dev"].select(range(5)):
        messages += [{"role": "user", "content": format_item(example)}, {"role": "assistant", "content": example["answer"]}]
    messages += [{"role": "user", "content": format_item(item)}]
    reply = await complete(
        model=model,
        messages=messages,
        temperature=0,
        max_tokens=1,
    )
    print(reply.choices[0].message.content.strip())
    acc = int(reply.choices[0].message.content.strip() == item["answer"])
    return [
        {
            "model": model,
            "bcp_47": language_bcp_47,
            "task": "mmlu",
            "metric": "accuracy",
            "score": acc,
            "sentence_nr": nr,
        }
    ]

@cache
async def transcribe_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    fleurs = pd.read_csv(
        f"data/fleurs/{language.fleurs_tag}/dev.tsv",
        sep="\t",
        names=[
            "id",
            "fname",
            "raw_transcription",
            "transcription",
            "words",
            "id2",
            "gender",
        ],
    )
    item = fleurs.iloc[nr]
    path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
    pred = await transcribe(path, model=model)
    wer_score = wer.compute(predictions=[pred], references=[item.transcription])
    return [
        {
            "model": model,
            "bcp_47": language["bcp_47"],
            "task": "asr",
            "metric": "wer",
            "score": wer_score,
            "sentence_nr": nr,
        }
    ]

tasks = [
    partial(translate_and_evaluate, mode="from"),
    partial(translate_and_evaluate, mode="to"),
    classify_and_evaluate,
    # mlm_and_evaluate,
    mmlu_and_evaluate,
    # transcribe_and_evaluate,
]