File size: 6,972 Bytes
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import random

import evaluate
import pandas as pd
from joblib.memory import Memory
from transformers import NllbTokenizer
from languages import languages, script_name
from datasets_.flores import flores_sentences
from models import complete, transcribe
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
wer = evaluate.load("wer")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")


# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
    frac=1, weights="speakers", replace=True, random_state=42
)

@cache
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
    original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[
        0
    ]
    target_language = target_languages.iloc[sentence_nr]
    original_sentence = flores_sentences(original_language)[sentence_nr].strip()
    target_sentence = flores_sentences(target_language)[sentence_nr].strip()
    script = script_name(target_language.flores_path.split("_")[1])
    reply = await complete(
        model=model,
        messages=[
            {
                "role": "user",
                "content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
            }
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    if prediction.strip():
        bleu_score = bleu.compute(
            predictions=[prediction],
            references=[target_sentence],
            tokenizer=tokenizer.tokenize,
        )
    else:
        bleu_score = {"bleu": 0}
    chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
    return [
        {
            "model": model,
            "bcp_47": original_language["bcp_47"],
            "task": "translation",
            "metric": metric,
            "score": score,
            "sentence_nr": sentence_nr,
        }
        for metric, score in zip(
            ["bleu", "chrf"], [bleu_score["bleu"], chrf_score["score"] / 100]
        )
    ]


metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t")


@cache
async def classify_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
    sentences = pd.concat([metadata, sentences], axis=1)
    sentences = sentences.dropna(subset=["topic"])
    sentences["topic"] = sentences["topic"].str.lower()
    paragraphs = (
        sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index()
    )
    top_topics = paragraphs.value_counts("topic").head(5).index
    paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
    examples = pd.concat(
        [
            paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42)
            for t in top_topics
        ]
    ).sample(frac=1, random_state=42)
    test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample(
        frac=1, random_state=42
    )
    test_paragraph = test_paragraphs.iloc[nr]

    def topic_to_number(topic):
        return top_topics.get_loc(topic)

    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.text},
            {"role": "assistant", "content": str(topic_to_number(example.topic))},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_paragraph.text,
            },
        ],
        temperature=0,
        max_tokens=5,
    )
    try:
        pred = int(reply.choices[0].message.content.strip())
    except ValueError:
        pred = -1
    true = topic_to_number(test_paragraph.topic)
    return [
        {
            "model": model,
            "bcp_47": language["bcp_47"],
            "task": "classification",
            "metric": "accuracy",
            "score": int(pred == true),
            "sentence_nr": nr,
        }
    ]


def corrupt_sentence(sentence):
    # replace 5% of the sentence with <mask>
    mask_length = round(len(sentence) * 0.05)
    start = random.randint(0, len(sentence) - mask_length)
    end = start + mask_length
    return sentence[:start] + "<mask>" + sentence[end:]


@cache
async def mlm_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    sentences = pd.DataFrame(flores_sentences(language), columns=["text"])
    sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence)
    examples = sentences.sample(n=10, random_state=42)
    test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample(
        frac=1, random_state=42
    )
    test_sentence = test_sentences.iloc[nr]
    messages = []
    for example in examples.itertuples():
        messages += [
            {"role": "user", "content": example.corrupt_text},
            {"role": "assistant", "content": example.text},
        ]
    reply = await complete(
        model=model,
        messages=[
            *messages,
            {
                "role": "user",
                "content": test_sentence.corrupt_text,
            },
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text])
    return [
        {
            "model": model,
            "bcp_47": language["bcp_47"],
            "task": "language_modeling",
            "metric": "chrf",
            "score": chrf_score["score"] / 100,
            "sentence_nr": nr,
        }
    ]

@cache
async def transcribe_and_evaluate(model, language_bcp_47, nr):
    language = languages[languages["bcp_47"] == language_bcp_47].iloc[0]
    fleurs = pd.read_csv(
        f"data/fleurs/{language.fleurs_tag}/dev.tsv",
        sep="\t",
        names=[
            "id",
            "fname",
            "raw_transcription",
            "transcription",
            "words",
            "id2",
            "gender",
        ],
    )
    item = fleurs.iloc[nr]
    path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}"
    pred = await transcribe(path, model=model)
    wer_score = wer.compute(predictions=[pred], references=[item.transcription])
    return [
        {
            "model": model,
            "bcp_47": language["bcp_47"],
            "task": "asr",
            "metric": "wer",
            "score": wer_score,
            "sentence_nr": nr,
        }
    ]


tasks = [
    translate_and_evaluate,
    classify_and_evaluate,
    mlm_and_evaluate,
    # transcribe_and_evaluate,
]