File size: 4,976 Bytes
da6e1bc
 
 
 
 
723f963
da6e1bc
723f963
 
da6e1bc
723f963
da6e1bc
 
 
 
 
 
 
 
 
 
 
3ed02d5
da6e1bc
 
 
 
 
 
 
3ed02d5
da6e1bc
 
 
 
 
 
 
 
3ed02d5
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed02d5
da6e1bc
 
 
 
 
3ed02d5
 
 
 
 
 
da6e1bc
 
 
 
3ed02d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723f963
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed02d5
da6e1bc
 
d1a7111
 
 
 
723f963
 
 
 
 
d1a7111
 
 
 
430bde6
723f963
 
 
 
 
 
 
 
 
 
 
 
d1a7111
 
723f963
da6e1bc
 
 
 
 
 
 
 
 
 
 
3ed02d5
11c32ae
723f963
da6e1bc
d1a7111
723f963
11c32ae
723f963
da6e1bc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import asyncio
import json

import numpy as np
import pandas as pd
from countries import make_country_table
from languages import languages
from models import model_fast, models
from rich import print
from tasks import tasks
from tqdm.asyncio import tqdm_asyncio

# ===== config =====

n_sentences = 30
langs_eval = languages.iloc[:10]
langs_eval_detailed = languages.iloc[:2]
transcription_langs_eval = languages.iloc[:10]
transcription_langs_eval_detailed = languages.iloc[:5]

# ===== run evaluation and aggregate results =====


async def evaluate():
    print("running evaluations")
    results = [
        task(model, original_language.bcp_47, i)
        for task in tasks
        for i in range(n_sentences)
        for original_language in langs_eval.itertuples()
        for model in models["id"]
        if original_language.in_benchmark
        and (
            model == model_fast
            or original_language.bcp_47 in langs_eval_detailed.bcp_47.values
        )
    ]
    return await tqdm_asyncio.gather(*results, miniters=1)


def aggregate(results):
    results = pd.DataFrame([r for rs in results for r in rs])
    results = (
        results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
    )
    lang_results = (
        results.groupby(["bcp_47", "task", "metric"])
        .agg({"score": "mean", "model": "nunique"})
        .reset_index()
    )
    lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
    model_results = (
        results.groupby(["model", "task", "metric"])
        .agg({"score": "mean", "bcp_47": "nunique"})
        .reset_index()
    )
    task_results = (
        results.groupby(["task", "metric"])
        .agg({"score": "mean", "bcp_47": "nunique", "model": "nunique"})
        .reset_index()
    )
    return results, lang_results, model_results, task_results


def mean(lst):
    return sum(lst) / len(lst) if lst else None


def fmt_name(s):
    return (
        " ".join(w.capitalize() for w in s.split("-"))
        .replace("Gpt", "GPT")
        .replace("ai", "AI")
    )


def serialize(df):
    return df.replace({np.nan: None}).to_dict(orient="records")


def make_model_table(df):
    df["task_metric"] = df["task"] + "_" + df["metric"]
    df = df.drop(columns=["task", "metric"])
    task_metrics = df["task_metric"].unique()
    df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
    df["average"] = df[task_metrics].mean(axis=1)
    df = df.sort_values(by="average", ascending=False).reset_index()
    for row in [*task_metrics, "average"]:
        df[row] = df[row].round(2)
    df = pd.merge(df, models, left_on="model", right_on="id", how="left")
    df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
    df["provider"] = df["model"].str.split("/").str[0].apply(fmt_name)
    df["model"] = df["model"].str.split("/").str[1].apply(fmt_name)
    df["rank"] = df.index + 1
    df = df[
        [
            "rank",
            "provider",
            "model",
            "hf_id",
            "creation_date",
            "size",
            "type",
            "license",
            "average",
            *task_metrics,
        ]
    ]
    return df


def make_language_table(df):
    df["task_metric"] = df["task"] + "_" + df["metric"]
    df = df.drop(columns=["task", "metric"])
    task_metrics = df["task_metric"].unique()
    df = (
        df.pivot(index="bcp_47", columns="task_metric", values="score")
        .fillna(0)
        .reset_index()
    )
    df["average"] = df[task_metrics].mean(axis=1)
    for row in [*task_metrics, "average"]:
        df[row] = df[row].round(2)
    df = pd.merge(languages, df, on="bcp_47", how="outer")
    df = df.sort_values(by="speakers", ascending=False)
    df = df[
        [
            "bcp_47",
            "language_name",
            "autonym",
            "speakers",
            "family",
            "average",
            "in_benchmark",
            *task_metrics,
        ]
    ]
    return df


async def main():
    results = await evaluate()
    results, lang_results, model_results, task_results = aggregate(results)
    all_results = {
        "tasks": serialize(task_results),
        "models": serialize(model_results),
        "languages": serialize(lang_results),
        "scores": serialize(results),
    }
    with open("results.json", "w") as f:
        json.dump(all_results, f, indent=2, ensure_ascii=False)

    datasets_df = pd.read_json("data/datasets.json")
    language_table = make_language_table(lang_results)
    all_tables = {
        "model_table": serialize(make_model_table(model_results)),
        "language_table": serialize(language_table),
        "dataset_table": serialize(datasets_df),
        "countries": make_country_table(language_table),
    }
    with open("frontend/public/results.json", "w") as f:
        json.dump(all_tables, f, indent=2, ensure_ascii=False)


if __name__ == "__main__":
    asyncio.run(main())