File size: 4,962 Bytes
da6e1bc
 
3ed02d5
da6e1bc
 
 
3ed02d5
da6e1bc
 
9002fc2
da6e1bc
 
 
 
 
 
9002fc2
da6e1bc
c5278dd
9002fc2
8274634
 
 
da6e1bc
8274634
c5278dd
da6e1bc
9002fc2
8274634
da6e1bc
9002fc2
c5278dd
43057f8
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed02d5
 
 
 
9002fc2
 
 
 
 
 
 
 
 
 
3ed02d5
 
9002fc2
d91b022
9002fc2
 
 
 
 
 
 
 
 
 
 
 
3ed02d5
 
9dbdcb2
3ed02d5
 
 
 
 
 
 
 
9002fc2
3ed02d5
9002fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from os import getenv

import pandas as pd
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient, HfApi
from joblib.memory import Memory
from openai import AsyncOpenAI
from requests import HTTPError, get

# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
models = [
    "openai/gpt-4o-mini",  # 0.6$/M tokens
    # "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev
    "meta-llama/llama-4-maverick",  # 0.6$/M tokens
    "meta-llama/llama-3.3-70b-instruct",  # 0.3$/M tokens
    "meta-llama/llama-3.1-70b-instruct",  # 0.3$/M tokens
    "meta-llama/llama-3-70b-instruct",  # 0.4$/M tokens
    "mistralai/mistral-small-3.1-24b-instruct",  # 0.3$/M tokens
    # "mistralai/mistral-saba", # 0.6$/M tokens
    # "mistralai/mistral-nemo", # 0.08$/M tokens
    "google/gemini-2.0-flash-001",  # 0.4$/M tokens
    # "google/gemini-2.0-flash-lite-001",  # 0.3$/M tokens
    "google/gemma-3-27b-it",  # 0.2$/M tokens
    # "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
    "qwen/qwq-32b",  # 0.2$/M tokens
    "deepseek/deepseek-chat-v3-0324",  # 1.1$/M tokens
    # "microsoft/phi-4",  # 0.07$/M tokens; only 16k tokens context
    "microsoft/phi-4-multimodal-instruct",  # 0.1$/M tokens
    "amazon/nova-micro-v1",  # 0.09$/M tokens
    # "openGPT-X/Teuken-7B-instruct-research-v0.4",  # not on OpenRouter
]

transcription_models = [
    "elevenlabs/scribe_v1",
    "openai/whisper-large-v3",
    # "openai/whisper-small",
    # "facebook/seamless-m4t-v2-large",
]

load_dotenv()
client = AsyncOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=getenv("OPENROUTER_API_KEY"),
)

cache = Memory(location=".cache", verbose=0).cache
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)


@cache
async def complete(**kwargs):
    async with openrouter_rate_limit:
        response = await client.chat.completions.create(**kwargs)
    if not response.choices:
        raise Exception(response)
    return response


@cache
async def transcribe_elevenlabs(path, model):
    modelname = model.split("/")[-1]
    client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
    async with elevenlabs_rate_limit:
        with open(path, "rb") as file:
            response = await client.speech_to_text.convert(
                model_id=modelname, file=file
            )
    return response.text


@cache
async def transcribe_huggingface(path, model):
    client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
    async with huggingface_rate_limit:
        output = await client.automatic_speech_recognition(model=model, audio=path)
    return output.text


async def transcribe(path, model="elevenlabs/scribe_v1"):
    provider, modelname = model.split("/")
    match provider:
        case "elevenlabs":
            return await transcribe_elevenlabs(path, modelname)
        case "openai" | "facebook":
            return await transcribe_huggingface(path, model)
        case _:
            raise ValueError(f"Model {model} not supported")


models = pd.DataFrame(models, columns=["id"])


@cache
def get_or_metadata(id):
    # get metadata from OpenRouter
    response = cache(get)("https://openrouter.ai/api/frontend/models/")
    models = response.json()["data"]
    metadata = next((m for m in models if m["slug"] == id), None)
    return metadata


api = HfApi()


@cache
def get_hf_metadata(row):
    # get metadata from the HuggingFace API
    empty = {
        "hf_id": None,
        "creation_date": None,
        "size": None,
        "type": "Commercial",
        "license": None,
    }
    id = row["hf_slug"] or row["slug"]
    if not id:
        return empty
    try:
        info = api.model_info(id)
        license = info.card_data.license.replace("-", " ").replace("mit", "MIT").title()
        return {
            "hf_id": info.id,
            "creation_date": info.created_at,
            "size": info.safetensors.total,
            "type": "Open",
            "license": license,
        }
    except HTTPError:
        return empty


or_metadata = models["id"].apply(get_or_metadata)
hf_metadata = or_metadata.apply(get_hf_metadata)


def get_cost(row):
    cost = float(row["endpoint"]["pricing"]["completion"])
    return round(cost * 1_000_000, 2)


models = models.assign(
    name=or_metadata.str["short_name"],
    provider_name=or_metadata.str["name"].str.split(": ").str[0],
    cost=or_metadata.apply(get_cost),
    hf_id=hf_metadata.str["hf_id"],
    creation_date=pd.to_datetime(hf_metadata.str["creation_date"]),
    size=hf_metadata.str["size"],
    type=hf_metadata.str["type"],
    license=hf_metadata.str["license"],
)