File size: 5,501 Bytes
3a246c9 0e5691e 3a246c9 50128d8 9aa08d7 3a246c9 50128d8 3a246c9 9aa08d7 5640508 9aa08d7 3a246c9 5640508 3a246c9 0e5691e 5640508 3a246c9 e6f1c56 3a246c9 e6f1c56 86b8b3a 5640508 9aa08d7 86b8b3a 9aa08d7 5640508 0e5691e 9aa08d7 5640508 9aa08d7 0e5691e 3a246c9 0e5691e 3a246c9 9aa08d7 3a246c9 5640508 9aa08d7 3a246c9 50128d8 5640508 50128d8 0e5691e 5640508 0e5691e 50128d8 86b8b3a 3a246c9 5640508 0e5691e 9aa08d7 0e5691e 9aa08d7 3a246c9 0e5691e 3a246c9 86b8b3a 3a246c9 0e5691e b909c3a e6f1c56 86b8b3a 3a246c9 e6f1c56 0e5691e 86b8b3a 0e5691e 3a246c9 9aa08d7 3a246c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import asyncio
import json
import os
import random
from os import getenv
import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from openai import AsyncOpenAI
from tqdm.asyncio import tqdm_asyncio
# config
models = [
"openai/gpt-4o-mini",
"anthropic/claude-3.5-sonnet",
"meta-llama/llama-3.1-70b-instruct", # lots of slow repetitions for LRLs
"mistralai/mistral-nemo",
# "google/gemini-flash-1.5", # very fast
"qwen/qwen-2.5-72b-instruct", # somewhat slow
]
fast_model = "anthropic/claude-3.5-sonnet"
original_language = "eng_Latn"
dataset = "floresp-v2.0-rc.3/dev"
random.seed(42)
target_languages = [f.split(".")[1] for f in os.listdir(dataset)]
detailed_target_languages = random.choices(target_languages, k=5)
# setup
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("sacrebleu")
bertscore = evaluate.load("bertscore")
rate_limit = AsyncLimiter(max_rate=15, time_period=1)
def reorder(language_name):
if "," in language_name and "(" not in language_name:
return language_name.split(",")[1] + " " + language_name.split(",")[0]
return language_name
language_names = pd.read_csv("LanguageCodes.tab", sep="\t")
language_names["Name"] = language_names["Name"].apply(reorder).str.strip()
language_stats = pd.read_csv("languages.tsv", sep="\t")
script_names = pd.read_csv("ScriptCodes.csv")
# utils
def check_rate_limit():
print(
requests.get(
"https://openrouter.ai/api/v1/auth/key",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()
)
models = requests.get(
"https://openrouter.ai/api/v1/models",
headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
).json()["data"]
model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None)
print(model)
@cache
async def complete(**kwargs):
async with rate_limit:
response = await client.chat.completions.create(**kwargs)
if not response.choices:
raise Exception(response)
return response
@cache
async def translate(model, target_language, target_script, sentence):
reply = await complete(
model=model,
messages=[
{
"role": "user",
"content": f"Translate the following text to the {target_language} language; use the {target_script} script; reply only with the translation:\n\n{sentence}",
}
],
temperature=0,
max_tokens=1024,
)
return reply.choices[0].message.content
def get_language_stats(language_code):
lang, script = language_code.split("_", 1)
script = script.split("_", 1)[0]
stats = language_stats[language_stats["iso639_3"] == lang]
if not stats.empty:
stats = stats.iloc[0].to_dict()
else:
stats = dict()
stats["script"] = script_names[script_names["Code"] == script]["English Name"].iloc[
0
]
name_series = language_names[language_names["LangID"] == lang]["Name"]
stats["name"] = (
name_series.iloc[0]
if not name_series.empty
else stats.get("itemLabel_en") or stats.get("itemLabel", lang)
)
return stats
def mean(l):
return sum(l) / len(l)
# evaluation!
async def main():
n = 30
results = []
original_sentences = open(f"{dataset}/dev.{original_language}").readlines()
for target_language in target_languages:
target_sentences = open(f"{dataset}/dev.{target_language}").readlines()
for model in models:
if model != fast_model and target_language not in detailed_target_languages:
continue
stats = get_language_stats(target_language)
print(f"{model} -> {stats['name']}")
predictions = [
translate(model, stats["name"], stats["script"], sentence)
for sentence in original_sentences[:n]
]
predictions = await tqdm_asyncio.gather(*predictions, miniters=1)
metrics = bleu.compute(
predictions=predictions,
references=target_sentences[:n],
tokenize="char",
)
bert_metrics = bertscore.compute(
predictions=predictions,
references=target_sentences[:n],
model_type="distilbert-base-uncased",
)
results.append(
{
"model": model,
"original_language": original_language,
"target_language": target_language,
"target_language_name": stats["name"],
"speakers": int(stats.get("maxSpeakers", 0)),
"bleu": metrics["score"],
"bert_score": mean(bert_metrics["f1"]),
}
)
with open("results.json", "w") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
pd.DataFrame(results).groupby("target_language_name").agg(
{"bleu": "mean", "bert_score": "mean", "speakers": "mean"}
).reset_index().to_json("results_summary.json", indent=2, orient="records")
if __name__ == "__main__":
# check_rate_limit()
asyncio.run(main())
|