File size: 9,378 Bytes
3a246c9
 
 
d5fc8b3
56081d8
3a246c9
 
 
50128d8
9aa08d7
 
3a246c9
50128d8
56081d8
 
3a246c9
56081d8
3a246c9
6b6f157
3a246c9
 
 
d5fc8b3
175993f
d5fc8b3
 
 
175993f
d5fc8b3
 
3a246c9
175993f
6b6f157
3a246c9
 
e6f1c56
3a246c9
 
 
 
 
6b6f157
086a421
6b6f157
 
9aa08d7
 
d5fc8b3
 
 
 
 
 
 
56081d8
 
 
d5fc8b3
 
8190782
 
 
 
d5fc8b3
29c8ef6
 
 
 
 
 
 
 
 
d5fc8b3
 
 
8190782
56081d8
 
 
 
 
 
 
 
 
 
 
 
6b6f157
63202a2
6b6f157
56081d8
 
6b6f157
56081d8
 
6b6f157
d5fc8b3
 
 
 
 
 
56081d8
d5fc8b3
6b6f157
 
 
d5fc8b3
 
8beab26
 
 
d5fc8b3
 
8190782
 
d5fc8b3
8190782
d5fc8b3
 
 
 
 
8190782
 
 
 
 
d5fc8b3
 
 
 
 
 
 
 
 
 
 
8beab26
63202a2
8beab26
63202a2
6b6f157
 
edcfb8f
86b8b3a
 
 
9aa08d7
 
 
 
 
 
 
5640508
 
 
 
 
 
0e5691e
 
 
 
9aa08d7
 
5640508
 
9aa08d7
0e5691e
8190782
56081d8
 
 
 
 
 
 
 
 
 
 
 
 
0e5691e
3a246c9
 
 
 
56081d8
3a246c9
 
5640508
9aa08d7
3a246c9
56081d8
086a421
56081d8
 
 
 
086a421
56081d8
 
 
086a421
 
56081d8
 
50128d8
 
56081d8
 
86b8b3a
 
 
3a246c9
56081d8
 
 
 
 
 
 
 
 
 
 
 
3a246c9
56081d8
 
 
 
 
 
 
 
 
 
6b6f157
 
086a421
 
6b6f157
 
56081d8
 
 
 
 
 
 
 
086a421
29c8ef6
 
 
 
 
 
 
56081d8
 
63202a2
 
3a246c9
 
 
9aa08d7
3a246c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import asyncio
import json
import os
import re
from datetime import date
from os import getenv

import evaluate
import pandas as pd
import requests
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from joblib.memory import Memory
from langcodes import Language, standardize_tag
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION
from openai import AsyncOpenAI
from requests import get
from tqdm.asyncio import tqdm_asyncio
from transformers import NllbTokenizer

# config
models = [
    "openai/gpt-4o-mini",  # 0.6$/M tokens
    # "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive
    "meta-llama/llama-3.3-70b-instruct",  # 0.3$/M tokens
    "mistralai/mistral-small-24b-instruct-2501",  # 0.14$/M tokens
    "google/gemini-2.0-flash-001",  # 0.4$/M tokens
    # "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
    "deepseek/deepseek-chat",  # 0.9$/M tokens
    "microsoft/phi-4",  # 0.07$/M tokens
]
fast_model = "meta-llama/llama-3.3-70b-instruct"
n_sentences = 30

# setup
load_dotenv()
client = AsyncOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=getenv("OPENROUTER_API_KEY"),
)
cache = Memory(location=".cache", verbose=0).cache
bleu = evaluate.load("bleu")
chrf = evaluate.load("chrf")
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
rate_limit = AsyncLimiter(max_rate=20, time_period=1)


# load general language data
languages = {
    lang: pop
    for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
    if not re.match(r".*-[A-Z]{2}$", lang)
}
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"])
languages["language_name"] = languages["bcp_47"].apply(
    lambda x: Language.get(x).display_name()
)

# load script codes and names
scripts = pd.read_csv("data/ScriptCodes.csv").rename(
    columns={"Code": "iso15924", "English Name": "script_name"}
)


def population(bcp_47):
    items = {
        re.sub(r"^[a-z]+-", "", lang): pop
        for lang, pop in LANGUAGE_SPEAKING_POPULATION.items()
        if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang)
    }
    return items


def script_name(iso15924):
    return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0]


def aggregate_flores_paths(flores_paths):
    # takes a list of paths from the same language but different scripts
    # returns the one with the largest writing population
    if len(flores_paths) == 1:
        return flores_paths.values[0]
    populations = [
        Language.get(standardize_tag(x, macro=True)).writing_population()
        for x in flores_paths.values
    ]
    return flores_paths.values[populations.index(max(populations))]


# load benchmark languages and scripts
benchmark_dir = "data/floresp-v2.0-rc.3/dev"
benchmark_languages = pd.DataFrame(
    [f.split(".")[1] for f in os.listdir(benchmark_dir)],
    columns=["flores_path"],
)
benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply(
    lambda x: standardize_tag(x, macro=True),
)
# ignore script (language is language)
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply(
    lambda x: re.sub(r"-[A-Z][a-z]+$", "", x)
)
benchmark_languages = (
    benchmark_languages.groupby("bcp_47")
    .agg({"flores_path": aggregate_flores_paths})
    .reset_index()
)


# load CommonVoice stats
@cache  # cache for 1 day
def get_commonvoice_stats(date: date):
    return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json()


commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename(
    columns={"locale": "commonvoice_locale", "validatedHours": "commonvoice_hours"}
)[["commonvoice_locale", "commonvoice_hours"]]
# ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK)
commonvoice_stats["bcp_47"] = commonvoice_stats["commonvoice_locale"].apply(
    lambda x: re.sub(r"-[A-Z]{2}$", "", x)
)
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply(
    lambda x: standardize_tag(x, macro=True)
)  # this does not really seem to get macrolanguages though, e.g. not for Quechua
commonvoice_stats = (
    commonvoice_stats.groupby("bcp_47")
    .agg({"commonvoice_hours": "sum", "commonvoice_locale": "first"})
    .reset_index()
)

# merge data
languages = pd.merge(
    languages, benchmark_languages, on="bcp_47", how="left"
)  # "left" because keep it simple for now
languages = pd.merge(
    languages, commonvoice_stats, on="bcp_47", how="left"
)  # "left" because keep it simple for now
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"])

languages = languages.sort_values(by="speakers", ascending=False)

# sample languages to translate to
target_languages = languages[languages["in_benchmark"]].sample(
    n=n_sentences, weights="speakers", replace=True, random_state=42
)
# sample languages to analyze with all models
detailed_languages = languages[languages["in_benchmark"]].sample(n=30, random_state=42)


# utils
def check_rate_limit():
    print(
        requests.get(
            "https://openrouter.ai/api/v1/auth/key",
            headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
        ).json()
    )
    models = requests.get(
        "https://openrouter.ai/api/v1/models",
        headers={"Authorization": f"Bearer {getenv('OPENROUTER_API_KEY')}"},
    ).json()["data"]
    model = next((m for m in models if m["id"] == "google/gemini-flash-1.5"), None)
    print(model)


@cache
async def complete(**kwargs):
    async with rate_limit:
        response = await client.chat.completions.create(**kwargs)
    if not response.choices:
        raise Exception(response)
    return response


def load_sentences(language):
    return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines()


@cache
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr):
    original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[
        0
    ]
    target_language = target_languages.iloc[sentence_nr]
    original_sentence = load_sentences(original_language)[sentence_nr].strip()
    target_sentence = load_sentences(target_language)[sentence_nr].strip()
    script = script_name(target_language.flores_path.split("_")[1])
    reply = await complete(
        model=model,
        messages=[
            {
                "role": "user",
                "content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}",
            }
        ],
        temperature=0,
        max_tokens=1024,
    )
    prediction = reply.choices[0].message.content.strip()
    bleu_score = bleu.compute(
        predictions=[prediction],
        references=[target_sentence],
        tokenizer=tokenizer.tokenize,
    )
    chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence])
    return {
        "model": model,
        "bcp_47": original_language["bcp_47"],
        "bleu": bleu_score["bleu"],
        "chrf": chrf_score["score"],
        "sentence_nr": sentence_nr,
    }


def mean(lst):
    return sum(lst) / len(lst) if lst else 0


# evaluation!
async def main():
    scores = [
        translate_and_evaluate(model, original_language.bcp_47, i)
        for i in range(n_sentences)
        for original_language in languages.itertuples()
        for model in models
        if original_language.in_benchmark
        and (
            model == fast_model
            or original_language.bcp_47 in detailed_languages.bcp_47.values
        )
    ]
    scores = await tqdm_asyncio.gather(*scores, miniters=1)
    results = []
    for language in languages.itertuples():
        results_for_language = []
        for model in models:
            results_for_model = [
                score
                for score in scores
                if score["bcp_47"] == language.bcp_47 and score["model"] == model
            ]
            if results_for_model:
                results_for_language.append(
                    {
                        "model": model,
                        "bleu": mean([s["bleu"] for s in results_for_model]),
                        "chrf": mean([s["chrf"] for s in results_for_model]),
                    }
                )
        if results_for_language:
            results.append(
                {
                    "language_name": language.language_name,
                    "bcp_47": language.bcp_47,
                    "speakers": language.speakers,
                    "scores": results_for_language,
                    "bleu": mean([s["bleu"] for s in results_for_language]),
                    "chrf": mean([s["chrf"] for s in results_for_language]),
                    "commonvoice_hours": language.commonvoice_hours
                    if not pd.isna(language.commonvoice_hours)
                    else None,
                    "commonvoice_locale": language.commonvoice_locale
                    if not pd.isna(language.commonvoice_locale)
                    else None,
                    "population": population(language.bcp_47),
                }
            )
    with open("results.json", "w") as f:
        json.dump(results, f, indent=2, ensure_ascii=False)


if __name__ == "__main__":
    # check_rate_limit()
    asyncio.run(main())