File size: 3,742 Bytes
2c21cf7 d91b022 2c21cf7 d91b022 2c21cf7 eb1696c 2c21cf7 d91b022 2c21cf7 d91b022 eb1696c d91b022 eb1696c 2c21cf7 566c57e eb1696c 2c21cf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import json
import numpy as np
import pandas as pd
import uvicorn
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from languages import languages
from models import models
from countries import make_country_table
def mean(lst):
return sum(lst) / len(lst) if lst else None
def make_model_table(df, models):
df = (
df.groupby(["model", "task", "metric"])
.agg({"score": "mean", "bcp_47": "nunique"})
.reset_index()
)
df["task_metric"] = df["task"] + "_" + df["metric"]
df = df.drop(columns=["task", "metric"])
task_metrics = df["task_metric"].unique()
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
df["average"] = df[task_metrics].mean(axis=1)
df = df.sort_values(by="average", ascending=False).reset_index()
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
df["rank"] = df.index + 1
df = df[
[
"rank",
"model",
"hf_id",
"creation_date",
"size",
"type",
"license",
"average",
*task_metrics,
]
]
return df
def make_language_table(df, languages):
df = (
df.groupby(["bcp_47", "task", "metric"])
.agg({"score": "mean", "model": "nunique"})
.reset_index()
)
df["task_metric"] = df["task"] + "_" + df["metric"]
df = df.drop(columns=["task", "metric"])
task_metrics = df["task_metric"].unique()
df = (
df.pivot(index="bcp_47", columns="task_metric", values="score")
.fillna(0)
.reset_index()
)
df["average"] = df[task_metrics].mean(axis=1)
df = pd.merge(languages, df, on="bcp_47", how="outer")
df = df.sort_values(by="speakers", ascending=False)
df = df[
[
"bcp_47",
"language_name",
"autonym",
"speakers",
"family",
"average",
"in_benchmark",
*task_metrics,
]
]
return df
app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)
with open("results.json", "r") as f:
results = pd.DataFrame(json.load(f))
def serialize(df):
return df.replace({np.nan: None}).to_dict(orient="records")
@app.post("/api/data")
async def data(request: Request):
body = await request.body()
data = json.loads(body)
selected_languages = data.get("selectedLanguages", {})
df = (
results.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
)
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
language_table = make_language_table(df, languages)
datasets_df = pd.read_json("data/datasets.json")
countries = make_country_table(language_table)
if selected_languages:
# the filtering is only applied for the model table
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
model_table = make_model_table(df, models)
all_tables = {
"model_table": serialize(model_table),
"language_table": serialize(language_table),
"dataset_table": serialize(datasets_df),
"countries": serialize(countries),
}
return JSONResponse(content=all_tables)
app.mount("/", StaticFiles(directory="frontend/public", html=True), name="frontend")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|