File size: 4,233 Bytes
da6e1bc
 
3ed02d5
da6e1bc
 
 
3ed02d5
da6e1bc
 
3ed02d5
da6e1bc
 
 
 
 
 
 
c5278dd
 
da6e1bc
c5278dd
da6e1bc
c5278dd
 
da6e1bc
c5278dd
 
da6e1bc
c5278dd
 
da6e1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed02d5
 
 
 
 
 
 
 
 
9dbdcb2
3ed02d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from os import getenv

import pandas as pd
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from elevenlabs import AsyncElevenLabs
from huggingface_hub import AsyncInferenceClient, HfApi
from joblib.memory import Memory
from openai import AsyncOpenAI
from requests import HTTPError

# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
models = [
    "openai/gpt-4o-mini",  # 0.6$/M tokens
    # "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev
    "meta-llama/llama-3.3-70b-instruct",  # 0.3$/M tokens
    "meta-llama/llama-3.1-70b-instruct",  # 0.3$/M tokens
    "meta-llama/llama-3-70b-instruct", # 0.4$/M tokens
    "mistralai/mistral-small-24b-instruct-2501",  # 0.14$/M tokens
    "mistralai/mistral-nemo",
    "google/gemini-2.0-flash-001",  # 0.4$/M tokens
    "google/gemini-2.0-flash-lite-001",  # 0.3$/M tokens
    "google/gemma-3-27b-it",  # 0.2$/M tokens
    # "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content"
    "qwen/qwq-32b",
    # "deepseek/deepseek-chat",  # 1.3$/M tokens
    # "microsoft/phi-4",  # 0.07$/M tokens; only 16k tokens context
    "microsoft/phi-4-multimodal-instruct",
    "amazon/nova-micro-v1",  # 0.09$/M tokens
]
model_fast = "meta-llama/llama-3.3-70b-instruct"

transcription_models = [
    "elevenlabs/scribe_v1",
    "openai/whisper-large-v3",
    # "openai/whisper-small",
    # "facebook/seamless-m4t-v2-large",
]
transcription_model_fast = "elevenlabs/scribe_v1"

load_dotenv()
client = AsyncOpenAI(
    base_url="https://openrouter.ai/api/v1",
    api_key=getenv("OPENROUTER_API_KEY"),
)

cache = Memory(location=".cache", verbose=0).cache
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)


@cache
async def complete(**kwargs):
    async with openrouter_rate_limit:
        response = await client.chat.completions.create(**kwargs)
    if not response.choices:
        raise Exception(response)
    return response


@cache
async def transcribe_elevenlabs(path, model):
    modelname = model.split("/")[-1]
    client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
    async with elevenlabs_rate_limit:
        with open(path, "rb") as file:
            response = await client.speech_to_text.convert(
                model_id=modelname, file=file
            )
    return response.text


@cache
async def transcribe_huggingface(path, model):
    client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
    async with huggingface_rate_limit:
        output = await client.automatic_speech_recognition(model=model, audio=path)
    return output.text


async def transcribe(path, model="elevenlabs/scribe_v1"):
    provider, modelname = model.split("/")
    match provider:
        case "elevenlabs":
            return await transcribe_elevenlabs(path, modelname)
        case "openai" | "facebook":
            return await transcribe_huggingface(path, model)
        case _:
            raise ValueError(f"Model {model} not supported")


models = pd.DataFrame(models, columns=["id"])

api = HfApi()

def get_metadata(id):
    try:
        info = api.model_info(id)
        license = info.card_data.license.replace("-", " ").replace("mit", "MIT").title()
        return {
            "hf_id": info.id,
            "creation_date": info.created_at,
            "size": info.safetensors.total,
            "type": "Open",
            "license": license,
        }
    except HTTPError:
        return {
            "hf_id": None,
            "creation_date": None,
            "size": None,
            "type": "Commercial",
            "license": None,
        }

models["hf_id"] = models["id"].apply(get_metadata).str["hf_id"]
models["creation_date"] = models["id"].apply(get_metadata).str["creation_date"]
models["creation_date"] = pd.to_datetime(models["creation_date"])
models["size"] = models["id"].apply(get_metadata).str["size"]
models["type"] = models["id"].apply(get_metadata).str["type"]
models["license"] = models["id"].apply(get_metadata).str["license"]