import gradio as gr import os from moviepy.editor import VideoFileClip from transformers import pipeline # Load models asr = pipeline(task="automatic-speech-recognition", model="distil-whisper/distil-small.en") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") stored_transcript = "" def transcribe_and_summarize(video_file): global stored_transcript if video_file is None: return "Error: No file provided.", "" try: video = VideoFileClip(video_file) audio_path = "temp_audio.wav" video.audio.write_audiofile(audio_path, codec='pcm_s16le') transcription_result = asr(audio_path, return_timestamps=True) transcribed_text = " ".join([segment['text'] for segment in transcription_result['chunks']]) stored_transcript = transcribed_text if len(transcribed_text.split()) < 50: summarized_text = "Text too short to summarize." else: summary_result = summarizer(transcribed_text, max_length=500, min_length=100, do_sample=False) summarized_text = summary_result[0]['summary_text'] return transcribed_text, summarized_text except Exception as e: return f"Error: {str(e)}", "" def answer_question(question): global stored_transcript if not stored_transcript: return "Please transcribe a video first." result = qa_pipeline(question=question, context=stored_transcript) return result['answer'] with gr.Blocks(css=""" body { background-color: black !important; } .gradio-container { color: #FFFF33 !important; } button { background-color: #FFFF33 !important; color: black !important; border: none !important; } input, textarea, .gr-textbox, .gr-video { background-color: #111 !important; color: #FFFF33 !important; border-color: #FFFF33 !important; } """) as iface: gr.HTML("

🎥 Video Transcriber, Summarizer & Q&A Tool

") gr.HTML("

Upload a video to get a transcript, summary, and ask questions about its content.

") with gr.Tab("📝 Transcription & Summary"): video_input = gr.Video(label="Upload Video (.mp4)", interactive=True) transcribe_btn = gr.Button("🚀 Transcribe and Summarize") transcribed_text = gr.Textbox(label="Transcribed Text", lines=8, interactive=False) summarized_text = gr.Textbox(label="Summarized Text", lines=8, interactive=False) transcribe_btn.click(fn=transcribe_and_summarize, inputs=video_input, outputs=[transcribed_text, summarized_text]) with gr.Tab("❓ Ask Questions"): question_input = gr.Textbox(label="Ask a question based on the transcript", placeholder="E.g., What is the main topic?") ask_btn = gr.Button("🔍 Get Answer") answer_output = gr.Textbox(label="Answer", interactive=False) ask_btn.click(fn=answer_question, inputs=question_input, outputs=answer_output) # Launch app port = int(os.environ.get('PORT1', 7860)) iface.launch(share=True, server_port=port)