Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,62 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
#
|
5 |
-
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
6 |
|
7 |
-
|
|
|
|
|
|
|
8 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
-
# Transcribe
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# Summarize Transcription
|
17 |
-
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
18 |
|
19 |
-
return transcribed_text, summary
|
20 |
except Exception as e:
|
21 |
-
print(f"Error: {str(e)}") # Log errors
|
22 |
return f"Error: {str(e)}", ""
|
23 |
|
24 |
-
# Gradio
|
|
|
25 |
iface = gr.Interface(
|
26 |
-
fn=
|
27 |
-
inputs=gr.Audio(
|
28 |
-
outputs=[
|
29 |
-
|
30 |
-
|
|
|
31 |
)
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
from transformers import pipeline
|
8 |
|
9 |
+
# Load ASR (Speech-to-Text) pipeline with timestamp handling
|
10 |
+
asr = pipeline(task="automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
11 |
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Load Summarization model
|
16 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
|
18 |
+
# Function to transcribe and summarize audio
|
19 |
+
def transcribe_and_summarize(audio_file):
|
20 |
+
if audio_file is None:
|
21 |
+
return "Error: No audio file provided.", ""
|
22 |
+
|
23 |
+
|
24 |
try:
|
25 |
+
# Transcribe audio (handling long-form audio)
|
26 |
+
transcription_result = asr(audio_file, return_timestamps=True)
|
27 |
+
|
28 |
+
# Extract transcribed text
|
29 |
+
transcribed_text = " ".join([segment['text'] for segment in transcription_result['chunks']])
|
30 |
+
|
31 |
+
# Ensure the transcribed text isn't too short for summarization
|
32 |
+
if len(transcribed_text.split()) < 50:
|
33 |
+
summarized_text = "Text too short to summarize."
|
34 |
+
else:
|
35 |
+
# Summarize the transcribed text
|
36 |
+
summary_result = summarizer(transcribed_text, max_length=100, min_length=30, do_sample=False)
|
37 |
+
summarized_text = summary_result[0]['summary_text']
|
38 |
+
|
39 |
+
return transcribed_text, summarized_text
|
40 |
+
|
41 |
+
|
42 |
|
|
|
|
|
43 |
|
|
|
44 |
except Exception as e:
|
|
|
45 |
return f"Error: {str(e)}", ""
|
46 |
|
47 |
+
# Create Gradio interface
|
48 |
+
|
49 |
iface = gr.Interface(
|
50 |
+
fn=transcribe_and_summarize,
|
51 |
+
inputs=gr.Audio(type="filepath"), # Accepts an audio file
|
52 |
+
outputs=[
|
53 |
+
gr.Textbox(label="Transcribed Text"),
|
54 |
+
gr.Textbox(label="Summarized Text")
|
55 |
+
]
|
56 |
)
|
57 |
|
58 |
+
# Get port safely (default to 7860 if not set)
|
59 |
+
port = int(os.environ.get('PORT1', 7860))
|
60 |
+
|
61 |
+
# Launch Gradio app
|
62 |
+
iface.launch(share=True, server_port=port)
|