Update app.py
Browse files
app.py
CHANGED
@@ -5,29 +5,19 @@ from pytubefix import YouTube
|
|
5 |
from moviepy.editor import VideoFileClip
|
6 |
from transformers import pipeline
|
7 |
|
8 |
-
#
|
9 |
-
os.environ["PYTHONUNBUFFERED"] = "1"
|
10 |
-
os.environ["PYTHONIOENCODING"] = "utf-8"
|
11 |
-
|
12 |
-
# Load Whisper model for transcription
|
13 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
14 |
|
15 |
-
#
|
16 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
|
18 |
def process_youtube_link(youtube_url):
|
19 |
try:
|
20 |
-
time.sleep(3) # Prevents rate limiting
|
21 |
-
|
22 |
-
# Use OAuth for restricted videos
|
23 |
yt = YouTube(youtube_url, use_oauth=True, allow_oauth_cache=True)
|
24 |
title = yt.title
|
25 |
print(f"Downloading: {title}")
|
26 |
|
27 |
video_stream = yt.streams.get_highest_resolution()
|
28 |
-
if not video_stream:
|
29 |
-
return "Error: No available video stream", ""
|
30 |
-
|
31 |
video_path = f"{title}.mp4"
|
32 |
video_stream.download(filename=video_path)
|
33 |
|
@@ -43,22 +33,18 @@ def process_youtube_link(youtube_url):
|
|
43 |
# Summarize Transcription
|
44 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
45 |
|
46 |
-
# Clean up files after processing
|
47 |
-
os.remove(video_path)
|
48 |
-
os.remove(audio_path)
|
49 |
-
|
50 |
return transcribed_text, summary
|
51 |
|
52 |
except Exception as e:
|
53 |
return f"Error: {str(e)}", ""
|
54 |
|
55 |
-
#
|
56 |
iface = gr.Interface(
|
57 |
fn=process_youtube_link,
|
58 |
inputs=gr.Textbox(label="Enter YouTube URL"),
|
59 |
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
|
60 |
-
title="YouTube Video
|
61 |
-
description="Enter a YouTube link, and this app will
|
62 |
)
|
63 |
|
64 |
iface.launch()
|
|
|
5 |
from moviepy.editor import VideoFileClip
|
6 |
from transformers import pipeline
|
7 |
|
8 |
+
# Whisper model
|
|
|
|
|
|
|
|
|
9 |
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
|
10 |
|
11 |
+
# Summarization model
|
12 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
13 |
|
14 |
def process_youtube_link(youtube_url):
|
15 |
try:
|
|
|
|
|
|
|
16 |
yt = YouTube(youtube_url, use_oauth=True, allow_oauth_cache=True)
|
17 |
title = yt.title
|
18 |
print(f"Downloading: {title}")
|
19 |
|
20 |
video_stream = yt.streams.get_highest_resolution()
|
|
|
|
|
|
|
21 |
video_path = f"{title}.mp4"
|
22 |
video_stream.download(filename=video_path)
|
23 |
|
|
|
33 |
# Summarize Transcription
|
34 |
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
35 |
|
|
|
|
|
|
|
|
|
36 |
return transcribed_text, summary
|
37 |
|
38 |
except Exception as e:
|
39 |
return f"Error: {str(e)}", ""
|
40 |
|
41 |
+
# Gradio Interface
|
42 |
iface = gr.Interface(
|
43 |
fn=process_youtube_link,
|
44 |
inputs=gr.Textbox(label="Enter YouTube URL"),
|
45 |
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
|
46 |
+
title="YouTube Video Summarizer",
|
47 |
+
description="Enter a YouTube link, and this app will summarize the content of the video.",
|
48 |
)
|
49 |
|
50 |
iface.launch()
|