project1 / app.py
dtkne's picture
Update app.py
fd02f98 verified
raw
history blame
1.08 kB
import gradio as gr
from transformers import pipeline
# Whisper model
asr = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
# Summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def process_audio(audio_path):
try:
# Transcribe Audio
transcription = asr(audio_path, return_timestamps=True)
transcribed_text = transcription["text"]
# Summarize Transcription
summary = summarizer(transcribed_text, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
return transcribed_text, summary
except Exception as e:
print(f"Error: {str(e)}") # Log errors
return f"Error: {str(e)}", ""
# Gradio Interface
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Summary")],
title="Audio Summarizer",
description="Upload an audio file, and this app will transcribe and summarize its content.",
)
iface.launch()