File size: 597 Bytes
93d849e
5d6bc67
93d849e
5d6bc67
 
93d849e
 
79348af
5d6bc67
 
 
 
 
 
 
 
79348af
5d6bc67
 
79348af
d4d41ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
import os
from transformers import pipeline

# Load ASR pipeline
asr = pipeline(task="automatic-speech-recognition",
               model="distil-whisper/distil-small.en")

# Define function
def transcribe(audio):
    out = asr(audio)
    return out['text']  # Extract transcribed text

# Create Gradio Interface
iface = gr.Interface(fn=transcribe,
                     inputs=gr.Audio(type="filepath"),  # Expect an audio file path
                     outputs="text")

# Launch Interface
iface.launch(share=True, 
             server_port=int(os.environ.get('PORT1', 7860)))