import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import functools
import itertools


########
# unit #
########


def singleton(class_):
    instances = {}

    def getinstance(*args, **kwargs):
        if class_ not in instances:
            instances[class_] = class_(*args, **kwargs)
        return instances[class_]

    return getinstance


def str2value(v):
    v = v.strip()
    try:
        return int(v)
    except:
        pass
    try:
        return float(v)
    except:
        pass
    if v in ('True', 'true'):
        return True
    elif v in ('False', 'false'):
        return False
    else:
        return v


@singleton
class get_unit(object):
    def __init__(self):
        self.unit = {}
        self.register('none', None)

        # general convolution
        self.register('conv', nn.Conv2d)
        self.register('bn', nn.BatchNorm2d)
        self.register('relu', nn.ReLU)
        self.register('relu6', nn.ReLU6)
        self.register('lrelu', nn.LeakyReLU)
        self.register('dropout', nn.Dropout)
        self.register('dropout2d', nn.Dropout2d)
        self.register('sine', Sine)
        self.register('relusine', ReLUSine)

    def register(self,
                 name,
                 unitf, ):

        self.unit[name] = unitf

    def __call__(self, name):
        if name is None:
            return None
        i = name.find('(')
        i = len(name) if i == -1 else i
        t = name[:i]
        f = self.unit[t]
        args = name[i:].strip('()')
        if len(args) == 0:
            args = {}
            return f
        else:
            args = args.split('=')
            args = [[','.join(i.split(',')[:-1]), i.split(',')[-1]] for i in args]
            args = list(itertools.chain.from_iterable(args))
            args = [i.strip() for i in args if len(i) > 0]
            kwargs = {}
            for k, v in zip(args[::2], args[1::2]):
                if v[0] == '(' and v[-1] == ')':
                    kwargs[k] = tuple([str2value(i) for i in v.strip('()').split(',')])
                elif v[0] == '[' and v[-1] == ']':
                    kwargs[k] = [str2value(i) for i in v.strip('[]').split(',')]
                else:
                    kwargs[k] = str2value(v)
            return functools.partial(f, **kwargs)


def register(name):
    def wrapper(class_):
        get_unit().register(name, class_)
        return class_

    return wrapper


class Sine(object):
    def __init__(self, freq, gain=1):
        self.freq = freq
        self.gain = gain
        self.repr = 'sine(freq={}, gain={})'.format(freq, gain)

    def __call__(self, x, gain=1):
        act_gain = self.gain * gain
        return torch.sin(self.freq * x) * act_gain

    def __repr__(self, ):
        return self.repr


class ReLUSine(nn.Module):
    def __init(self):
        super().__init__()

    def forward(self, input):
        a = torch.sin(30 * input)
        b = nn.ReLU(inplace=False)(input)
        return a + b


@register('lrelu_agc')
class lrelu_agc(object):
    """
    The lrelu layer with alpha, gain and clamp
    """

    def __init__(self, alpha=0.1, gain=1, clamp=None):
        # super().__init__()
        self.alpha = alpha
        if gain == 'sqrt_2':
            self.gain = np.sqrt(2)
        else:
            self.gain = gain
        self.clamp = clamp
        self.repr = 'lrelu_agc(alpha={}, gain={}, clamp={})'.format(
            alpha, gain, clamp)

    # def forward(self, x, gain=1):
    def __call__(self, x, gain=1):
        x = F.leaky_relu(x, negative_slope=self.alpha, inplace=True)
        act_gain = self.gain * gain
        act_clamp = self.clamp * gain if self.clamp is not None else None
        if act_gain != 1:
            x = x * act_gain
        if act_clamp is not None:
            x = x.clamp(-act_clamp, act_clamp)
        return x

    def __repr__(self, ):
        return self.repr


####################
# spatial encoding #
####################


@register('se')
class SpatialEncoding(nn.Module):
    def __init__(self,
                 in_dim,
                 out_dim,
                 sigma=6,
                 cat_input=True,
                 require_grad=False, ):

        super().__init__()
        assert out_dim % (2 * in_dim) == 0, "dimension must be dividable"

        n = out_dim // 2 // in_dim
        m = 2 ** np.linspace(0, sigma, n)
        m = np.stack([m] + [np.zeros_like(m)] * (in_dim - 1), axis=-1)
        m = np.concatenate([np.roll(m, i, axis=-1) for i in range(in_dim)], axis=0)
        self.emb = torch.FloatTensor(m)
        if require_grad:
            self.emb = nn.Parameter(self.emb, requires_grad=True)
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.sigma = sigma
        self.cat_input = cat_input
        self.require_grad = require_grad

    def forward(self, x, format='[n x c]'):
        """
        Args:
            x: [n x m1],
                m1 usually is 2
        Outputs:
            y: [n x m2]         
                m2 dimention number
                :param format:
        """
        if format == '[bs x c x 2D]':
            xshape = x.shape
            x = x.permute(0, 2, 3, 1).contiguous()
            x = x.view(-1, x.size(-1))
        elif format == '[n x c]':
            pass
        else:
            raise ValueError

        if not self.require_grad:
            self.emb = self.emb.to(x.device)
        y = torch.mm(x, self.emb.T)
        if self.cat_input:
            z = torch.cat([x, torch.sin(y), torch.cos(y)], dim=-1)
        else:
            z = torch.cat([torch.sin(y), torch.cos(y)], dim=-1)

        if format == '[bs x c x 2D]':
            z = z.view(xshape[0], xshape[2], xshape[3], -1)
            z = z.permute(0, 3, 1, 2).contiguous()
        return z

    def extra_repr(self):
        outstr = 'SpatialEncoding (in={}, out={}, sigma={}, cat_input={}, require_grad={})'.format(
            self.in_dim, self.out_dim, self.sigma, self.cat_input, self.require_grad)
        return outstr


@register('rffe')
class RFFEncoding(SpatialEncoding):
    """
    Random Fourier Features
    """

    def __init__(self,
                 in_dim,
                 out_dim,
                 sigma=6,
                 cat_input=True,
                 require_grad=False, ):
        super().__init__(in_dim, out_dim, sigma, cat_input, require_grad)
        n = out_dim // 2
        m = np.random.normal(0, sigma, size=(n, in_dim))
        self.emb = torch.FloatTensor(m)
        if require_grad:
            self.emb = nn.Parameter(self.emb, requires_grad=True)

    def extra_repr(self):
        outstr = 'RFFEncoding (in={}, out={}, sigma={}, cat_input={}, require_grad={})'.format(
            self.in_dim, self.out_dim, self.sigma, self.cat_input, self.require_grad)
        return outstr


##########
# helper #
##########


def freeze(net):
    for m in net.modules():
        if isinstance(m, (
                nn.BatchNorm2d,
                nn.SyncBatchNorm,)):
            # inplace_abn not supported
            m.eval()
    for pi in net.parameters():
        pi.requires_grad = False
    return net


def common_init(m):
    if isinstance(m, (
            nn.Conv2d,
            nn.ConvTranspose2d,)):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, (
            nn.BatchNorm2d,
            nn.SyncBatchNorm,)):
        nn.init.constant_(m.weight, 1)
        nn.init.constant_(m.bias, 0)
    else:
        pass


def init_module(module):
    """
    Args:
        module: [nn.module] list or nn.module
            a list of module to be initialized.
    """
    if isinstance(module, (list, tuple)):
        module = list(module)
    else:
        module = [module]

    for mi in module:
        for mii in mi.modules():
            common_init(mii)


def get_total_param(net):
    if getattr(net, 'parameters', None) is None:
        return 0
    return sum(p.numel() for p in net.parameters())


def get_total_param_sum(net):
    if getattr(net, 'parameters', None) is None:
        return 0
    with torch.no_grad():
        s = sum(p.cpu().detach().numpy().sum().item() for p in net.parameters())
    return s