Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
from transformers import pipeline, SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
6 |
+
|
7 |
+
# Load the pre-trained segmentation model
|
8 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
9 |
+
segmentation_model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
10 |
+
|
11 |
+
def apply_blur_effect(image, blur_type):
|
12 |
+
"""
|
13 |
+
Applies either Gaussian blur to the whole image,
|
14 |
+
depth-based blur, or background blur while keeping the foreground sharp.
|
15 |
+
"""
|
16 |
+
image = image.resize((512, 512)) # Resize input image
|
17 |
+
|
18 |
+
if blur_type == "Gaussian Blur":
|
19 |
+
# Apply a fixed Gaussian blur to the entire image
|
20 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15))
|
21 |
+
return blurred_image
|
22 |
+
|
23 |
+
elif blur_type == "Depth-Based Lens Blur":
|
24 |
+
# Use depth estimation model to get depth map
|
25 |
+
depth_estimator = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
26 |
+
outputs = depth_estimator(image)
|
27 |
+
depth_map = np.array(outputs["depth"])
|
28 |
+
|
29 |
+
# Normalize depth map
|
30 |
+
depth_map_normalized = (depth_map - np.min(depth_map)) / (np.max(depth_map) - np.min(depth_map))
|
31 |
+
depth_array = np.clip(depth_map_normalized * 5, 0, 5).astype(int) # Scale depth to select blur levels
|
32 |
+
|
33 |
+
# Generate different levels of Gaussian blur
|
34 |
+
blur_levels = [image.filter(ImageFilter.GaussianBlur(radius=r)) for r in range(6)]
|
35 |
+
|
36 |
+
# Create depth-based blur image
|
37 |
+
depth_based_blur_image = Image.new("RGB", image.size)
|
38 |
+
for i in range(image.width):
|
39 |
+
for j in range(image.height):
|
40 |
+
blur_level = depth_array[j, i]
|
41 |
+
depth_based_blur_image.putpixel((i, j), blur_levels[blur_level].getpixel((i, j)))
|
42 |
+
|
43 |
+
return depth_based_blur_image
|
44 |
+
|
45 |
+
elif blur_type == "Background Blur (Zoom Effect)":
|
46 |
+
# Perform segmentation to get foreground and background masks
|
47 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
48 |
+
outputs = segmentation_model(**inputs)
|
49 |
+
logits = outputs.logits # Shape: (batch, num_classes, height, width)
|
50 |
+
predicted_mask = torch.argmax(logits, dim=1).squeeze().cpu().numpy()
|
51 |
+
|
52 |
+
# Create a binary mask (1 = foreground, 0 = background)
|
53 |
+
foreground_mask = (predicted_mask == 24).astype(np.uint8) # 'Person' class in Cityscapes dataset
|
54 |
+
|
55 |
+
# Convert the mask into a PIL image for processing
|
56 |
+
mask_image = Image.fromarray((foreground_mask * 255).astype(np.uint8))
|
57 |
+
|
58 |
+
# Apply Gaussian blur to the entire image
|
59 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=15))
|
60 |
+
|
61 |
+
# Blend the sharp foreground and blurred background
|
62 |
+
final_image = Image.composite(image, blurred_image, mask_image)
|
63 |
+
|
64 |
+
return final_image
|
65 |
+
|
66 |
+
return image
|
67 |
+
|
68 |
+
# Gradio UI
|
69 |
+
interface = gr.Interface(
|
70 |
+
fn=apply_blur_effect,
|
71 |
+
inputs=[
|
72 |
+
gr.Image(type="pil"),
|
73 |
+
gr.Radio(["Gaussian Blur", "Depth-Based Lens Blur", "Background Blur (Zoom Effect)"], label="Blur Type"),
|
74 |
+
],
|
75 |
+
outputs="image",
|
76 |
+
title="Image Blur Effects: Gaussian, Depth-Based & Background Blur",
|
77 |
+
description="Upload an image and apply Gaussian blur, depth-based blur, or background blur (Zoom-like effect).",
|
78 |
+
)
|
79 |
+
|
80 |
+
# Launch the Gradio app
|
81 |
+
if __name__ == "__main__":
|
82 |
+
interface.launch()
|