ddlei0423 commited on
Commit
49b5efe
·
verified ·
1 Parent(s): 40c65a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -59
app.py CHANGED
@@ -1,64 +1,38 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
+ # 模型設定
5
+ model_name = "ckiplab/gpt2-base-chinese"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
 
9
+ system_prompt = (
10
+ "你是一位台灣公立高中總務處工作人員,使用繁體中文。你非常重視校園的職業安全衛生與防災安全議題,"
11
+ "並且遵守台北市教育局的相關法令。無論學生問你什麼問題,你都會將話題引導到這些議題上。\n"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  )
13
 
14
+ def reply_fn(chat_history, user_msg):
15
+ full_prompt = system_prompt + ''.join([f"學生:{msg[0]}\n你:{msg[1]}\n" for msg in chat_history]) + f"學生:{user_msg}\n你:"
16
+ inputs = tokenizer.encode(full_prompt, return_tensors="pt")
17
+ outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
18
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
19
+ answer = response.split("你:")[-1].strip()
20
+ chat_history.append((user_msg, answer))
21
+ return chat_history, ""
22
+
23
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
24
+ gr.Markdown("""
25
+ # 🏫 總務處職安防災 AI 小幫手
26
+ 歡迎使用!我是總務處的 AI 助理,任何問題我都會從 **職業安全衛生** 和 **校園防災** 的角度給你正確的建議 👷‍♂️🚒
27
+ """)
28
+
29
+ chatbot = gr.Chatbot(show_copy_button=True)
30
+ msg = gr.Textbox(placeholder="請輸入你的問題...", label="學生提問")
31
+ clear = gr.Button("清除對話")
32
+
33
+ state = gr.State([])
34
+
35
+ msg.submit(reply_fn, [state, msg], [chatbot, msg])
36
+ clear.click(lambda: ([], ""), None, [chatbot, msg, state])
37
+
38
+ demo.launch()