Spaces:
Runtime error
Runtime error
Commit
·
c8b4b8f
1
Parent(s):
a473a1e
Try to fix the flagging mode error
Browse files
.specstory/history/2025-03-27_10-40-gradio-code-update-and-error-fix.md
CHANGED
|
@@ -81,6 +81,44 @@ These changes maintain all the same functionality while using the current Gradio
|
|
| 81 |
|
| 82 |
---
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
|
| 86 |
---
|
|
|
|
| 81 |
|
| 82 |
---
|
| 83 |
|
| 84 |
+
_**User**_
|
| 85 |
+
|
| 86 |
+
Now the error become this
|
| 87 |
+
|
| 88 |
+
```
|
| 89 |
+
/usr/local/lib/python3.10/site-packages/gradio/interface.py:415: UserWarning: The `allow_flagging` parameter in `Interface` is deprecated.Use `flagging_mode` instead.
|
| 90 |
+
warnings.warn(
|
| 91 |
+
Traceback (most recent call last):
|
| 92 |
+
File "/home/user/app/app.py", line 73, in <module>
|
| 93 |
+
demo = gr.Interface(
|
| 94 |
+
File "/usr/local/lib/python3.10/site-packages/gradio/interface.py", line 425, in __init__
|
| 95 |
+
raise ValueError(
|
| 96 |
+
ValueError: Invalid value for `flagging_mode` parameter.Must be: 'auto', 'manual', or 'never'.
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
---
|
| 100 |
+
|
| 101 |
+
_**Assistant**_
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
```diff
|
| 108 |
+
outputs=gr.Image(type="numpy", label="Generated - Conditioned Images"),
|
| 109 |
+
examples=examples,
|
| 110 |
+
- allow_flagging=False,
|
| 111 |
+
+ flagging_mode="never",
|
| 112 |
+
analytics_enabled=False,
|
| 113 |
+
title=title,
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
I've updated the code by replacing the deprecated `allow_flagging=False` parameter with the new `flagging_mode="never"` parameter. The newer versions of Gradio have replaced the boolean flag with a more flexible string parameter that supports different flagging modes: 'auto', 'manual', or 'never'.
|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
|
| 123 |
|
| 124 |
---
|
app.py
CHANGED
|
@@ -8,79 +8,109 @@ import gradio as gr
|
|
| 8 |
from huggingface_hub import from_pretrained_keras
|
| 9 |
|
| 10 |
model = from_pretrained_keras("keras-io/GauGAN-Image-generation")
|
| 11 |
-
|
|
|
|
| 12 |
def predict(image_file, segmentation_png, bitmap_img):
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
# label_file = tf.image.rgb_to_grayscale(tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=3))
|
| 24 |
-
# print("after decode_bmp --> ", label_file.shape, type(label_file))
|
| 25 |
-
label_file = tf.squeeze(label_file)
|
| 26 |
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
x2 = x1 + crop_size[1]
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
# print(final_img_list[1].shape)
|
| 48 |
-
# print(final_img_list[2].shape)
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
# Generate fake images
|
| 53 |
-
fake_image = model.predict([latent_vector, final_img_list[2]])
|
| 54 |
-
fake_img = tf.squeeze(fake_image, axis=0)
|
| 55 |
|
| 56 |
-
return np.array((fake_img+1)/2)
|
| 57 |
-
|
| 58 |
# Define inputs with modern Gradio syntax
|
| 59 |
ground_truth = gr.Image(type="filepath", label="Ground Truth - Real Image (jpg)")
|
| 60 |
segmentation = gr.Image(type="filepath", label="Corresponding Segmentation (png)")
|
| 61 |
-
bitmap = gr.Image(
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
examples = [
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
title = "GauGAN For Conditional Image Generation"
|
| 70 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
| 71 |
|
| 72 |
# Create interface with modern Gradio syntax
|
| 73 |
demo = gr.Interface(
|
| 74 |
-
fn=predict,
|
| 75 |
inputs=[ground_truth, segmentation, bitmap],
|
| 76 |
outputs=gr.Image(type="numpy", label="Generated - Conditioned Images"),
|
| 77 |
examples=examples,
|
| 78 |
-
|
| 79 |
analytics_enabled=False,
|
| 80 |
title=title,
|
| 81 |
description=description,
|
| 82 |
-
article="<center>Space By: <u><a href='https://github.com/robotjellyzone'><b>Kavya Bisht</b></a></u> \n Based on <a href='https://keras.io/examples/generative/gaugan/'><b>this notebook</b></a></center>"
|
| 83 |
)
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|
| 86 |
-
demo.launch(enable_queue=True, debug=True)
|
|
|
|
| 8 |
from huggingface_hub import from_pretrained_keras
|
| 9 |
|
| 10 |
model = from_pretrained_keras("keras-io/GauGAN-Image-generation")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
def predict(image_file, segmentation_png, bitmap_img):
|
| 14 |
|
| 15 |
+
image_list = [segmentation_png, image_file, bitmap_img]
|
| 16 |
+
|
| 17 |
+
image = tf.image.decode_png(tf.io.read_file(image_list[1]), channels=3)
|
| 18 |
+
image = tf.cast(image, tf.float32) / 127.5 - 1
|
| 19 |
|
| 20 |
+
segmentation_file = tf.image.decode_png(tf.io.read_file(image_list[0]), channels=3)
|
| 21 |
+
segmentation_file = tf.cast(segmentation_file, tf.float32) / 127.5 - 1
|
| 22 |
|
| 23 |
+
label_file = tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=0)
|
| 24 |
+
# label_file = tf.image.rgb_to_grayscale(tf.image.decode_bmp(tf.io.read_file(image_list[2]), channels=3))
|
| 25 |
+
# print("after decode_bmp --> ", label_file.shape, type(label_file))
|
| 26 |
+
label_file = tf.squeeze(label_file)
|
| 27 |
|
| 28 |
+
image_list = [segmentation_file, image, label_file]
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
crop_size = tf.convert_to_tensor((256, 256))
|
| 31 |
|
| 32 |
+
image_shape = tf.shape(image_list[1])[:2]
|
| 33 |
|
| 34 |
+
margins = image_shape - crop_size
|
| 35 |
|
| 36 |
+
y1 = tf.random.uniform(shape=(), maxval=margins[0], dtype=tf.int32)
|
| 37 |
+
x1 = tf.random.uniform(shape=(), maxval=margins[1], dtype=tf.int32)
|
| 38 |
+
y2 = y1 + crop_size[0]
|
| 39 |
+
x2 = x1 + crop_size[1]
|
| 40 |
|
| 41 |
+
cropped_images = []
|
| 42 |
+
for img in image_list:
|
| 43 |
+
cropped_images.append(img[y1:y2, x1:x2])
|
|
|
|
| 44 |
|
| 45 |
+
final_img_list = [
|
| 46 |
+
tf.expand_dims(cropped_images[0], axis=0),
|
| 47 |
+
tf.expand_dims(cropped_images[1], axis=0),
|
| 48 |
+
tf.expand_dims(tf.one_hot(cropped_images[2], 12), axis=0),
|
| 49 |
+
]
|
| 50 |
|
| 51 |
+
# print(final_img_list[0].shape)
|
| 52 |
+
# print(final_img_list[1].shape)
|
| 53 |
+
# print(final_img_list[2].shape)
|
| 54 |
|
| 55 |
+
latent_vector = tf.random.normal(shape=(1, 256), mean=0.0, stddev=2.0)
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Generate fake images
|
| 58 |
+
fake_image = model.predict([latent_vector, final_img_list[2]])
|
| 59 |
+
fake_img = tf.squeeze(fake_image, axis=0)
|
| 60 |
+
|
| 61 |
+
return np.array((fake_img + 1) / 2)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
| 64 |
# Define inputs with modern Gradio syntax
|
| 65 |
ground_truth = gr.Image(type="filepath", label="Ground Truth - Real Image (jpg)")
|
| 66 |
segmentation = gr.Image(type="filepath", label="Corresponding Segmentation (png)")
|
| 67 |
+
bitmap = gr.Image(
|
| 68 |
+
type="filepath", label="Corresponding bitmap image (bmp)", image_mode="L"
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
examples = [
|
| 72 |
+
[
|
| 73 |
+
"facades_data/cmp_b0010.jpg",
|
| 74 |
+
"facades_data/cmp_b0010.png",
|
| 75 |
+
"facades_data/cmp_b0010.bmp",
|
| 76 |
+
],
|
| 77 |
+
[
|
| 78 |
+
"facades_data/cmp_b0020.jpg",
|
| 79 |
+
"facades_data/cmp_b0020.png",
|
| 80 |
+
"facades_data/cmp_b0020.bmp",
|
| 81 |
+
],
|
| 82 |
+
[
|
| 83 |
+
"facades_data/cmp_b0030.jpg",
|
| 84 |
+
"facades_data/cmp_b0030.png",
|
| 85 |
+
"facades_data/cmp_b0030.bmp",
|
| 86 |
+
],
|
| 87 |
+
[
|
| 88 |
+
"facades_data/cmp_b0040.jpg",
|
| 89 |
+
"facades_data/cmp_b0040.png",
|
| 90 |
+
"facades_data/cmp_b0040.bmp",
|
| 91 |
+
],
|
| 92 |
+
[
|
| 93 |
+
"facades_data/cmp_b0050.jpg",
|
| 94 |
+
"facades_data/cmp_b0050.png",
|
| 95 |
+
"facades_data/cmp_b0050.bmp",
|
| 96 |
+
],
|
| 97 |
+
]
|
| 98 |
|
| 99 |
title = "GauGAN For Conditional Image Generation"
|
| 100 |
description = "Upload an Image or take one from examples to generate realistic images that are conditioned on cue images and segmentation maps"
|
| 101 |
|
| 102 |
# Create interface with modern Gradio syntax
|
| 103 |
demo = gr.Interface(
|
| 104 |
+
fn=predict,
|
| 105 |
inputs=[ground_truth, segmentation, bitmap],
|
| 106 |
outputs=gr.Image(type="numpy", label="Generated - Conditioned Images"),
|
| 107 |
examples=examples,
|
| 108 |
+
flagging_mode="never",
|
| 109 |
analytics_enabled=False,
|
| 110 |
title=title,
|
| 111 |
description=description,
|
| 112 |
+
article="<center>Space By: <u><a href='https://github.com/robotjellyzone'><b>Kavya Bisht</b></a></u> \n Based on <a href='https://keras.io/examples/generative/gaugan/'><b>this notebook</b></a></center>",
|
| 113 |
)
|
| 114 |
|
| 115 |
if __name__ == "__main__":
|
| 116 |
+
demo.launch(enable_queue=True, debug=True)
|