Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from transformers import
|
4 |
import torch
|
5 |
|
6 |
# Initialize Hugging Face Inference API client
|
7 |
hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
# Load the second model
|
10 |
local_model_name = "codewithdark/latent-recurrent-depth-lm"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(local_model_name)
|
12 |
-
model =
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
model.to(device)
|
15 |
|
16 |
def generate_response(
|
17 |
message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice
|
@@ -28,22 +28,29 @@ def generate_response(
|
|
28 |
|
29 |
if model_choice == "Zephyr-7B (API)":
|
30 |
response = ""
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
else:
|
42 |
input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
46 |
|
|
|
47 |
demo = gr.ChatInterface(
|
48 |
generate_response,
|
49 |
additional_inputs=[
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
# Initialize Hugging Face Inference API client
|
7 |
hf_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
+
# Load the second model (local)
|
10 |
local_model_name = "codewithdark/latent-recurrent-depth-lm"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(local_model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(local_model_name, trust_remote_code=True)
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device).eval() # Set model to evaluation mode
|
15 |
|
16 |
def generate_response(
|
17 |
message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model_choice
|
|
|
28 |
|
29 |
if model_choice == "Zephyr-7B (API)":
|
30 |
response = ""
|
31 |
+
try:
|
32 |
+
for message in hf_client.chat_completion(
|
33 |
+
messages=messages,
|
34 |
+
max_tokens=max_tokens,
|
35 |
+
stream=True,
|
36 |
+
temperature=temperature,
|
37 |
+
top_p=top_p,
|
38 |
+
):
|
39 |
+
token = message.choices[0].delta.content if message.choices else ""
|
40 |
+
response += token
|
41 |
+
yield response
|
42 |
+
except Exception as e:
|
43 |
+
yield f"Error in API response: {e}"
|
44 |
else:
|
45 |
input_text = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
|
46 |
+
with torch.no_grad():
|
47 |
+
output = model.generate(input_text, max_length=max_tokens, temperature=temperature, top_p=top_p)
|
48 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True).strip()
|
49 |
+
|
50 |
+
for i in range(len(response)):
|
51 |
+
yield response[: i + 1]
|
52 |
|
53 |
+
# Gradio UI
|
54 |
demo = gr.ChatInterface(
|
55 |
generate_response,
|
56 |
additional_inputs=[
|