File size: 8,186 Bytes
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e0c74d
b57c333
acac4ca
 
b57c333
7e0c74d
b57c333
acac4ca
 
b57c333
 
7e0c74d
b57c333
 
 
 
 
 
7e0c74d
b57c333
 
 
 
 
 
7e0c74d
b57c333
acac4ca
 
b57c333
 
7e0c74d
b57c333
 
 
 
 
 
acac4ca
b57c333
7e0c74d
b57c333
acac4ca
b57c333
acac4ca
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aa163b
 
 
 
 
 
 
 
 
 
 
 
b57c333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr

# from inference import InferencePipeline
# from FateZero import test_fatezero
from inference_fatezero import merge_config_then_run

# class InferenceUtil:
#     def __init__(self, hf_token: str | None):
#         self.hf_token = hf_token

#     def load_model_info(self, model_id: str) -> tuple[str, str]:
#         # todo FIXME
#         try:
#             card = InferencePipeline.get_model_card(model_id, self.hf_token)
#         except Exception:
#             return '', ''
#         base_model = getattr(card.data, 'base_model', '')
#         training_prompt = getattr(card.data, 'training_prompt', '')
#         return base_model, training_prompt


TITLE = '# [FateZero](http://fate-zero-edit.github.io/)'
HF_TOKEN = os.getenv('HF_TOKEN')
# pipe = InferencePipeline(HF_TOKEN)
pipe = merge_config_then_run
# app = InferenceUtil(HF_TOKEN)

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(TITLE)

    with gr.Row():
        with gr.Column():
            with gr.Box():

                model_id = gr.Dropdown(
                    label='Model ID',
                    choices=[
                        'CompVis/stable-diffusion-v1-4',
                        # add shape editing ckpt here
                    ],
                    value='CompVis/stable-diffusion-v1-4')
                # with gr.Accordion(
                #         label=
                #         'Model info (Base model and prompt used for training)',
                #         open=False):
                #     with gr.Row():
                #         base_model_used_for_training = gr.Text(
                #             label='Base model', interactive=False)
                #         prompt_used_for_training = gr.Text(
                #             label='Training prompt', interactive=False)
            
            data_path = gr.Dropdown(
                label='data path',
                choices=[
                    'FateZero/data/teaser_car-turn',
                    'FateZero/data/style/sunflower',
                    # add shape editing ckpt here
                ],
                value='FateZero/data/teaser_car-turn')



            source_prompt = gr.Textbox(label='Source Prompt',
                                info='A good prompt describes each frame and most objects in video. Especially, it has the object or attribute that we want to edit or preserve.',
                                max_lines=1,
                                placeholder='Example: "a silver jeep driving down a curvy road in the countryside"',
                                value='a silver jeep driving down a curvy road in the countryside')
            target_prompt = gr.Textbox(label='Target Prompt',
                                info='A reasonable composition of video may achieve better results(e.g., "sunflower" video with "Van Gogh" prompt is better than "sunflower" with "Monet")',
                                max_lines=1,
                                placeholder='Example: "watercolor painting of a silver jeep driving down a curvy road in the countryside"',
                                value='watercolor painting of a silver jeep driving down a curvy road in the countryside')
            
            cross_replace_steps = gr.Slider(label='cross-attention replace steps',
                            info='More steps, replace more cross attention to preserve semantic layout.',
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=0.7)
            
            self_replace_steps = gr.Slider(label='self-attention replace steps',
                            info='More steps, replace more spatial-temporal self-attention to preserve geometry and motion.',
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=0.7)
            
            enhance_words = gr.Textbox(label='words to be enhanced',
                                info='Amplify the target-words cross attention',
                                max_lines=1,
                                placeholder='Example: "watercolor "',
                                value='watercolor')

            enhance_words_value = gr.Slider(label='Amplify the target cross-attention',
                            info='larger value, more elements of target words',
                            minimum=0.0,
                            maximum=20.0,
                            step=1,
                            value=10)


            with gr.Accordion('DDIM Parameters', open=True):
                num_steps = gr.Slider(label='Number of Steps',
                                      info='larger value has better editing capacity, but takes more time and memory',
                                      minimum=0,
                                      maximum=50,
                                      step=1,
                                      value=10)
                guidance_scale = gr.Slider(label='CFG Scale',
                                           minimum=0,
                                           maximum=50,
                                           step=0.1,
                                           value=7.5)

            run_button = gr.Button('Generate')

            # gr.Markdown('''
            # - It takes a few minutes to download model first.
            # - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100)
            # ''')
            gr.Markdown('''
            todo
            ''')
        with gr.Column():
            result = gr.Video(label='Result')
    with gr.Row():
        examples = [
            [
                'CompVis/stable-diffusion-v1-4',
                'FateZero/data/teaser_car-turn',
                'a silver jeep driving down a curvy road in the countryside',
                'watercolor painting of a silver jeep driving down a curvy road in the countryside',
                0.8, 
                0.8,
                "watercolor",
                10,
                10,
                7.5,
            ],
            # [
            #     'CompVis/stable-diffusion-v1-4',
            #     'FateZero/data/style/sunflower',
            #     'a yellow sunflower',
            #     'van gogh style painting of a yellow sunflower',
            #     0.5,
            #     0.5,
            #     'van gogh',
            #     10,
            #     50,
            #     7.5,
            # ],
        ]
        gr.Examples(examples=examples,
                    inputs=[
                        model_id,
                        data_path,
                        source_prompt,
                        target_prompt,
                        cross_replace_steps,
                        self_replace_steps,
                        enhance_words,
                        enhance_words_value,
                        num_steps,
                        guidance_scale,
                    ],
                    outputs=result,
                    fn=merge_config_then_run,
                    cache_examples=os.getenv('SYSTEM') == 'spaces')

    # model_id.change(fn=app.load_model_info,
    #                 inputs=model_id,
    #                 outputs=[
    #                     base_model_used_for_training,
    #                     prompt_used_for_training,
    #                 ])
    inputs = [
            model_id,
            data_path,
            source_prompt,
            target_prompt,
            cross_replace_steps,
            self_replace_steps,
            enhance_words,
            enhance_words_value,
            num_steps,
            guidance_scale,
    ]
    # prompt.submit(fn=pipe.run, inputs=inputs, outputs=result)
    target_prompt.submit(fn=merge_config_then_run, inputs=inputs, outputs=result)
    # run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
    run_button.click(fn=merge_config_then_run, inputs=inputs, outputs=result)

demo.queue().launch()