# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import pytest from datasets import load_dataset from huggingface_hub import hf_hub_download, snapshot_download from transformers import ( MODEL_FOR_CTC_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, Speech2TextForConditionalGeneration, Wav2Vec2ForCTC, WhisperForConditionalGeneration, ) from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline from transformers.pipelines.audio_utils import chunk_bytes_iter from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_pyctcdecode, require_tf, require_torch, require_torch_gpu, require_torchaudio, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch # We can't use this mixin because it assumes TF support. # from .test_pipelines_common import CustomInputPipelineCommonMixin @is_pipeline_test class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase): model_mapping = dict( (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else []) + (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else []) ) def get_test_pipeline(self, model, tokenizer, processor): if tokenizer is None: # Side effect of no Fast Tokenizer class for these model, so skipping # But the slow tokenizer test should still run as they're quite small self.skipTest("No tokenizer available") return # return None, None speech_recognizer = AutomaticSpeechRecognitionPipeline( model=model, tokenizer=tokenizer, feature_extractor=processor ) # test with a raw waveform audio = np.zeros((34000,)) audio2 = np.zeros((14000,)) return speech_recognizer, [audio, audio2] def run_pipeline_test(self, speech_recognizer, examples): audio = np.zeros((34000,)) outputs = speech_recognizer(audio) self.assertEqual(outputs, {"text": ANY(str)}) # Striding audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate} if speech_recognizer.type == "ctc": outputs = speech_recognizer(audio) self.assertEqual(outputs, {"text": ANY(str)}) elif "Whisper" in speech_recognizer.model.__class__.__name__: outputs = speech_recognizer(audio) self.assertEqual(outputs, {"text": ANY(str)}) else: # Non CTC models cannot use striding. with self.assertRaises(ValueError): outputs = speech_recognizer(audio) # Timestamps audio = np.zeros((34000,)) if speech_recognizer.type == "ctc": outputs = speech_recognizer(audio, return_timestamps="char") self.assertIsInstance(outputs["chunks"], list) n = len(outputs["chunks"]) self.assertEqual( outputs, { "text": ANY(str), "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)], }, ) outputs = speech_recognizer(audio, return_timestamps="word") self.assertIsInstance(outputs["chunks"], list) n = len(outputs["chunks"]) self.assertEqual( outputs, { "text": ANY(str), "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)], }, ) elif "Whisper" in speech_recognizer.model.__class__.__name__: outputs = speech_recognizer(audio, return_timestamps=True) self.assertIsInstance(outputs["chunks"], list) nb_chunks = len(outputs["chunks"]) self.assertGreater(nb_chunks, 0) self.assertEqual( outputs, { "text": ANY(str), "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)], }, ) else: # Non CTC models cannot use return_timestamps with self.assertRaisesRegex( ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$" ): outputs = speech_recognizer(audio, return_timestamps="char") @require_torch @slow def test_pt_defaults(self): pipeline("automatic-speech-recognition", framework="pt") @require_torch def test_small_model_pt(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="facebook/s2t-small-mustc-en-fr-st", tokenizer="facebook/s2t-small-mustc-en-fr-st", framework="pt", ) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = speech_recognizer(waveform) self.assertEqual(output, {"text": "(Applaudissements)"}) output = speech_recognizer(waveform, chunk_length_s=10) self.assertEqual(output, {"text": "(Applaudissements)"}) # Non CTC models cannot use return_timestamps with self.assertRaisesRegex( ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$" ): _ = speech_recognizer(waveform, return_timestamps="char") @slow @require_torch def test_whisper_fp16(self): if not torch.cuda.is_available(): self.skipTest("Cuda is necessary for this test") speech_recognizer = pipeline( model="openai/whisper-base", device=0, torch_dtype=torch.float16, ) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) speech_recognizer(waveform) @require_torch def test_small_model_pt_seq2seq(self): speech_recognizer = pipeline( model="hf-internal-testing/tiny-random-speech-encoder-decoder", framework="pt", ) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = speech_recognizer(waveform) self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"}) @require_torch def test_small_model_pt_seq2seq_gen_kwargs(self): speech_recognizer = pipeline( model="hf-internal-testing/tiny-random-speech-encoder-decoder", framework="pt", ) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2}) self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"}) @slow @require_torch @require_pyctcdecode def test_large_model_pt_with_lm(self): dataset = load_dataset("Narsil/asr_dummy", streaming=True) third_item = next(iter(dataset["test"].skip(3))) filename = third_item["file"] speech_recognizer = pipeline( task="automatic-speech-recognition", model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm", framework="pt", ) self.assertEqual(speech_recognizer.type, "ctc_with_lm") output = speech_recognizer(filename) self.assertEqual( output, {"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"}, ) # Override back to pure CTC speech_recognizer.type = "ctc" output = speech_recognizer(filename) # plumajre != plumaje self.assertEqual( output, { "text": ( "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre" ) }, ) speech_recognizer.type = "ctc_with_lm" # Simple test with CTC with LM, chunking + timestamps output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word") self.assertEqual( output, { "text": ( "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri" ), "chunks": [ {"text": "y", "timestamp": (0.52, 0.54)}, {"text": "en", "timestamp": (0.6, 0.68)}, {"text": "las", "timestamp": (0.74, 0.84)}, {"text": "ramas", "timestamp": (0.94, 1.24)}, {"text": "medio", "timestamp": (1.32, 1.52)}, {"text": "sumergidas", "timestamp": (1.56, 2.22)}, {"text": "revoloteaban", "timestamp": (2.36, 3.0)}, {"text": "algunos", "timestamp": (3.06, 3.38)}, {"text": "pájaros", "timestamp": (3.46, 3.86)}, {"text": "de", "timestamp": (3.92, 4.0)}, {"text": "quimérico", "timestamp": (4.08, 4.6)}, {"text": "y", "timestamp": (4.66, 4.68)}, {"text": "legendario", "timestamp": (4.74, 5.26)}, {"text": "plumajcri", "timestamp": (5.34, 5.74)}, ], }, ) @require_tf def test_small_model_tf(self): self.skipTest("Tensorflow not supported yet.") @require_torch def test_torch_small_no_tokenizer_files(self): # test that model without tokenizer file cannot be loaded with pytest.raises(OSError): pipeline( task="automatic-speech-recognition", model="patrickvonplaten/tiny-wav2vec2-no-tokenizer", framework="pt", ) @require_torch @slow def test_torch_large(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="facebook/wav2vec2-base-960h", tokenizer="facebook/wav2vec2-base-960h", framework="pt", ) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = speech_recognizer(waveform) self.assertEqual(output, {"text": ""}) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"}) @require_torch def test_return_timestamps_in_preprocess(self): pipe = pipeline( task="automatic-speech-recognition", model="openai/whisper-tiny", chunk_length_s=8, stride_length_s=1, ) data = load_dataset("librispeech_asr", "clean", split="test", streaming=True) sample = next(iter(data)) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="en", task="transcribe") res = pipe(sample["audio"]["array"]) self.assertEqual(res, {"text": " Conquered returned to its place amidst the tents."}) res = pipe(sample["audio"]["array"], return_timestamps=True) self.assertEqual( res, { "text": " Conquered returned to its place amidst the tents.", "chunks": [{"text": " Conquered returned to its place amidst the tents.", "timestamp": (0.0, 3.36)}], }, ) @require_torch @slow def test_torch_whisper(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="openai/whisper-tiny", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."}) output = speech_recognizer([filename], chunk_length_s=5, batch_size=4) self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}]) @slow def test_find_longest_common_subsequence(self): max_source_positions = 1500 processor = AutoProcessor.from_pretrained("openai/whisper-tiny") previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]] self.assertEqual( processor.decode(previous_sequence[0], output_offsets=True), { "text": " not worth thinking about.", "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}], }, ) # Merge when the previous sequence is a suffix of the next sequence # fmt: off next_sequences_1 = [ [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257] ] # fmt: on self.assertEqual( processor.decode(next_sequences_1[0], output_offsets=True), { "text": ( " of spectators, retrievality is not worth thinking about. His instant panic was followed by a" " small, sharp blow high on his chest.<|endoftext|>" ), "offsets": [ {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)}, { "text": " His instant panic was followed by a small, sharp blow high on his chest.", "timestamp": (5.0, 9.4), }, ], }, ) merge = _find_timestamp_sequence( [[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]], processor.tokenizer, processor.feature_extractor, max_source_positions, ) # fmt: off self.assertEqual( merge, [51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959], ) # fmt: on self.assertEqual( processor.decode(merge, output_offsets=True), { "text": ( " not worth thinking about. His instant panic was followed by a small, sharp blow high on his" " chest." ), "offsets": [ {"text": " not worth thinking about.", "timestamp": (22.56, 27.5)}, { "text": " His instant panic was followed by a small, sharp blow high on his chest.", "timestamp": (27.5, 31.900000000000002), }, ], }, ) # Merge when the sequence is in the middle of the 1st next sequence # fmt: off next_sequences_2 = [ [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257] ] # fmt: on # {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)} merge = _find_timestamp_sequence( [[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]], processor.tokenizer, processor.feature_extractor, max_source_positions, ) # fmt: off self.assertEqual( merge, [51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959], ) # fmt: on self.assertEqual( processor.decode(merge, output_offsets=True), { "text": ( " not worth thinking about. His instant panic was followed by a small, sharp blow high on his" " chest." ), "offsets": [ { "text": ( " not worth thinking about. His instant panic was followed by a small, sharp blow high on" " his chest." ), "timestamp": (22.56, 31.900000000000002), }, ], }, ) # Merge when the previous sequence is not included in the current sequence # fmt: off next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]] # fmt: on # {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)} merge = _find_timestamp_sequence( [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]], processor.tokenizer, processor.feature_extractor, max_source_positions, ) # fmt: off self.assertEqual( merge, [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832], ) # fmt: on self.assertEqual( processor.decode(merge, output_offsets=True), { "text": ( " not worth thinking about. His instant panic was followed by a small, sharp blow high on his" " chest." ), "offsets": [ {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}, { "text": " His instant panic was followed by a small, sharp blow high on his chest.", "timestamp": (24.96, 29.36), }, ], }, ) # last case is when the sequence is not in the first next predicted start and end of timestamp # fmt: off next_sequences_3 = [ [50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934] ] # fmt: on merge = _find_timestamp_sequence( [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]], processor.tokenizer, processor.feature_extractor, max_source_positions, ) # fmt: off self.assertEqual( merge, [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912] ) # fmt: on self.assertEqual( processor.decode(merge, output_offsets=True), { "text": ( " not worth thinking about. His instant panic was followed by a small, sharp blow high on his" " chest." ), "offsets": [ {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}, { "text": " His instant panic was followed by a small, sharp blow high on his chest.", "timestamp": (24.96, 30.96), }, ], }, ) @slow @require_torch def test_whisper_timestamp_prediction(self): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") array = np.concatenate( [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]] ) pipe = pipeline( model="openai/whisper-small", return_timestamps=True, ) output = pipe(ds[40]["audio"]) self.assertDictEqual( output, { "text": " A man said to the universe, Sir, I exist.", "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}], }, ) output = pipe(array, chunk_length_s=10) self.assertDictEqual( nested_simplify(output), { "chunks": [ {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)}, { "text": ( " Sweat covered Brion's body, trickling into the " "tight-loan cloth that was the only garment he wore, the " "cut" ), "timestamp": (5.5, 11.95), }, { "text": ( " on his chest still dripping blood, the ache of his " "overstrained eyes, even the soaring arena around him " "with" ), "timestamp": (11.95, 19.61), }, { "text": " the thousands of spectators, retrievality is not worth thinking about.", "timestamp": (19.61, 25.0), }, { "text": " His instant panic was followed by a small, sharp blow high on his chest.", "timestamp": (25.0, 29.4), }, ], "text": ( " A man said to the universe, Sir, I exist. Sweat covered Brion's " "body, trickling into the tight-loan cloth that was the only garment " "he wore, the cut on his chest still dripping blood, the ache of his " "overstrained eyes, even the soaring arena around him with the " "thousands of spectators, retrievality is not worth thinking about. " "His instant panic was followed by a small, sharp blow high on his " "chest." ), }, ) output = pipe(array) self.assertDictEqual( output, { "chunks": [ {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)}, { "text": ( " Sweat covered Brion's body, trickling into the " "tight-loan cloth that was the only garment" ), "timestamp": (5.5, 10.18), }, {"text": " he wore.", "timestamp": (10.18, 11.68)}, {"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)}, {"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)}, { "text": ( " Even the soaring arena around him with the thousands of spectators were trivialities" ), "timestamp": (17.6, 22.56), }, {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}, ], "text": ( " A man said to the universe, Sir, I exist. Sweat covered Brion's " "body, trickling into the tight-loan cloth that was the only garment " "he wore. The cut on his chest still dripping blood. The ache of his " "overstrained eyes. Even the soaring arena around him with the " "thousands of spectators were trivialities not worth thinking about." ), }, ) @require_torch @slow def test_torch_speech_encoder_decoder(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="facebook/s2t-wav2vec2-large-en-de", feature_extractor="facebook/s2t-wav2vec2-large-en-de", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'}) @slow @require_torch def test_simple_wav2vec2(self): model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = asr(waveform) self.assertEqual(output, {"text": ""}) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = asr(filename) self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"}) filename = ds[40]["file"] with open(filename, "rb") as f: data = f.read() output = asr(data) self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"}) @slow @require_torch @require_torchaudio def test_simple_s2t(self): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st") tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st") asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) waveform = np.tile(np.arange(1000, dtype=np.float32), 34) output = asr(waveform) self.assertEqual(output, {"text": "(Applausi)"}) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = asr(filename) self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."}) filename = ds[40]["file"] with open(filename, "rb") as f: data = f.read() output = asr(data) self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."}) @slow @require_torch @require_torchaudio def test_simple_whisper_asr(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="openai/whisper-tiny.en", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") filename = ds[0]["file"] output = speech_recognizer(filename) self.assertEqual( output, {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."}, ) output = speech_recognizer(filename, return_timestamps=True) self.assertEqual( output, { "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.", "chunks": [ { "text": ( " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." ), "timestamp": (0.0, 5.44), } ], }, ) @slow @require_torch @require_torchaudio def test_simple_whisper_translation(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="openai/whisper-large", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."}) model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large") feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large") speech_recognizer_2 = AutomaticSpeechRecognitionPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor ) output_2 = speech_recognizer_2(filename) self.assertEqual(output, output_2) # either use generate_kwargs or set the model's generation_config # model.generation_config.task = "transcribe" # model.generation_config.lang = "<|it|>" speech_translator = AutomaticSpeechRecognitionPipeline( model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, generate_kwargs={"task": "transcribe", "language": "<|it|>"}, ) output_3 = speech_translator(filename) self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."}) @slow @require_torch @require_torchaudio def test_xls_r_to_en(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-21-to-en", feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."}) @slow @require_torch @require_torchaudio def test_xls_r_from_en(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="facebook/wav2vec2-xls-r-1b-en-to-15", feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15", framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."}) @slow @require_torch @require_torchaudio def test_speech_to_text_leveraged(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="patrickvonplaten/wav2vec2-2-bart-base", feature_extractor="patrickvonplaten/wav2vec2-2-bart-base", tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"), framework="pt", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") filename = ds[40]["file"] output = speech_recognizer(filename) self.assertEqual(output, {"text": "a man said to the universe sir i exist"}) @require_torch def test_chunking_fast(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="hf-internal-testing/tiny-random-wav2vec2", chunk_length_s=10.0, ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 2 audio_tiled = np.tile(audio, n_repeats) output = speech_recognizer([audio_tiled], batch_size=2) self.assertEqual(output, [{"text": ANY(str)}]) self.assertEqual(output[0]["text"][:6], "ZBT ZC") @require_torch def test_return_timestamps_ctc_fast(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="hf-internal-testing/tiny-random-wav2vec2", ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") # Take short audio to keep the test readable audio = ds[40]["audio"]["array"][:800] output = speech_recognizer(audio, return_timestamps="char") self.assertEqual( output, { "text": "ZBT ZX G", "chunks": [ {"text": " ", "timestamp": (0.0, 0.012)}, {"text": "Z", "timestamp": (0.012, 0.016)}, {"text": "B", "timestamp": (0.016, 0.02)}, {"text": "T", "timestamp": (0.02, 0.024)}, {"text": " ", "timestamp": (0.024, 0.028)}, {"text": "Z", "timestamp": (0.028, 0.032)}, {"text": "X", "timestamp": (0.032, 0.036)}, {"text": " ", "timestamp": (0.036, 0.04)}, {"text": "G", "timestamp": (0.04, 0.044)}, ], }, ) output = speech_recognizer(audio, return_timestamps="word") self.assertEqual( output, { "text": "ZBT ZX G", "chunks": [ {"text": "ZBT", "timestamp": (0.012, 0.024)}, {"text": "ZX", "timestamp": (0.028, 0.036)}, {"text": "G", "timestamp": (0.04, 0.044)}, ], }, ) @require_torch @require_pyctcdecode def test_chunking_fast_with_lm(self): speech_recognizer = pipeline( model="hf-internal-testing/processor_with_lm", chunk_length_s=10.0, ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 2 audio_tiled = np.tile(audio, n_repeats) # Batch_size = 1 output1 = speech_recognizer([audio_tiled], batch_size=1) self.assertEqual(output1, [{"text": ANY(str)}]) self.assertEqual(output1[0]["text"][:6], "<s> <s") # batch_size = 2 output2 = speech_recognizer([audio_tiled], batch_size=2) self.assertEqual(output2, [{"text": ANY(str)}]) self.assertEqual(output2[0]["text"][:6], "<s> <s") # TODO There is an offby one error because of the ratio. # Maybe logits get affected by the padding on this random # model is more likely. Add some masking ? # self.assertEqual(output1, output2) @require_torch @require_pyctcdecode def test_with_lm_fast(self): speech_recognizer = pipeline( model="hf-internal-testing/processor_with_lm", ) self.assertEqual(speech_recognizer.type, "ctc_with_lm") ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 2 audio_tiled = np.tile(audio, n_repeats) output = speech_recognizer([audio_tiled], batch_size=2) self.assertEqual(output, [{"text": ANY(str)}]) self.assertEqual(output[0]["text"][:6], "<s> <s") # Making sure the argument are passed to the decoder # Since no change happens in the result, check the error comes from # the `decode_beams` function. with self.assertRaises(TypeError) as e: output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2}) self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'") output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2}) @require_torch @require_pyctcdecode def test_with_local_lm_fast(self): local_dir = snapshot_download("hf-internal-testing/processor_with_lm") speech_recognizer = pipeline( task="automatic-speech-recognition", model=local_dir, ) self.assertEqual(speech_recognizer.type, "ctc_with_lm") ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 2 audio_tiled = np.tile(audio, n_repeats) output = speech_recognizer([audio_tiled], batch_size=2) self.assertEqual(output, [{"text": ANY(str)}]) self.assertEqual(output[0]["text"][:6], "<s> <s") @require_torch @slow def test_chunking_and_timestamps(self): model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") speech_recognizer = pipeline( task="automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, framework="pt", chunk_length_s=10.0, ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 10 audio_tiled = np.tile(audio, n_repeats) output = speech_recognizer([audio_tiled], batch_size=2) self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}]) output = speech_recognizer(audio, return_timestamps="char") self.assertEqual(audio.shape, (74_400,)) self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000) # The audio is 74_400 / 16_000 = 4.65s long. self.assertEqual( output, { "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST", "chunks": [ {"text": "A", "timestamp": (0.6, 0.62)}, {"text": " ", "timestamp": (0.62, 0.66)}, {"text": "M", "timestamp": (0.68, 0.7)}, {"text": "A", "timestamp": (0.78, 0.8)}, {"text": "N", "timestamp": (0.84, 0.86)}, {"text": " ", "timestamp": (0.92, 0.98)}, {"text": "S", "timestamp": (1.06, 1.08)}, {"text": "A", "timestamp": (1.14, 1.16)}, {"text": "I", "timestamp": (1.16, 1.18)}, {"text": "D", "timestamp": (1.2, 1.24)}, {"text": " ", "timestamp": (1.24, 1.28)}, {"text": "T", "timestamp": (1.28, 1.32)}, {"text": "O", "timestamp": (1.34, 1.36)}, {"text": " ", "timestamp": (1.38, 1.42)}, {"text": "T", "timestamp": (1.42, 1.44)}, {"text": "H", "timestamp": (1.44, 1.46)}, {"text": "E", "timestamp": (1.46, 1.5)}, {"text": " ", "timestamp": (1.5, 1.56)}, {"text": "U", "timestamp": (1.58, 1.62)}, {"text": "N", "timestamp": (1.64, 1.68)}, {"text": "I", "timestamp": (1.7, 1.72)}, {"text": "V", "timestamp": (1.76, 1.78)}, {"text": "E", "timestamp": (1.84, 1.86)}, {"text": "R", "timestamp": (1.86, 1.9)}, {"text": "S", "timestamp": (1.96, 1.98)}, {"text": "E", "timestamp": (1.98, 2.02)}, {"text": " ", "timestamp": (2.02, 2.06)}, {"text": "S", "timestamp": (2.82, 2.86)}, {"text": "I", "timestamp": (2.94, 2.96)}, {"text": "R", "timestamp": (2.98, 3.02)}, {"text": " ", "timestamp": (3.06, 3.12)}, {"text": "I", "timestamp": (3.5, 3.52)}, {"text": " ", "timestamp": (3.58, 3.6)}, {"text": "E", "timestamp": (3.66, 3.68)}, {"text": "X", "timestamp": (3.68, 3.7)}, {"text": "I", "timestamp": (3.9, 3.92)}, {"text": "S", "timestamp": (3.94, 3.96)}, {"text": "T", "timestamp": (4.0, 4.02)}, {"text": " ", "timestamp": (4.06, 4.1)}, ], }, ) output = speech_recognizer(audio, return_timestamps="word") self.assertEqual( output, { "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST", "chunks": [ {"text": "A", "timestamp": (0.6, 0.62)}, {"text": "MAN", "timestamp": (0.68, 0.86)}, {"text": "SAID", "timestamp": (1.06, 1.24)}, {"text": "TO", "timestamp": (1.28, 1.36)}, {"text": "THE", "timestamp": (1.42, 1.5)}, {"text": "UNIVERSE", "timestamp": (1.58, 2.02)}, {"text": "SIR", "timestamp": (2.82, 3.02)}, {"text": "I", "timestamp": (3.5, 3.52)}, {"text": "EXIST", "timestamp": (3.66, 4.02)}, ], }, ) output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0) self.assertEqual( output, { "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST", "chunks": [ {"text": "A", "timestamp": (0.6, 0.62)}, {"text": "MAN", "timestamp": (0.68, 0.86)}, {"text": "SAID", "timestamp": (1.06, 1.24)}, {"text": "TO", "timestamp": (1.3, 1.36)}, {"text": "THE", "timestamp": (1.42, 1.48)}, {"text": "UNIVERSE", "timestamp": (1.58, 2.02)}, # Tiny change linked to chunking. {"text": "SIR", "timestamp": (2.84, 3.02)}, {"text": "I", "timestamp": (3.5, 3.52)}, {"text": "EXIST", "timestamp": (3.66, 4.02)}, ], }, ) @require_torch @slow def test_chunking_with_lm(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="patrickvonplaten/wav2vec2-base-100h-with-lm", chunk_length_s=10.0, ) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id") audio = ds[40]["audio"]["array"] n_repeats = 10 audio = np.tile(audio, n_repeats) output = speech_recognizer([audio], batch_size=2) expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats expected = [{"text": expected_text.strip()}] self.assertEqual(output, expected) @require_torch def test_chunk_iterator(self): feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") inputs = torch.arange(100).long() ratio = 1 outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0, ratio)) self.assertEqual(len(outs), 1) self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)]) self.assertEqual([o["is_last"] for o in outs], [True]) # two chunks no stride outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0, ratio)) self.assertEqual(len(outs), 2) self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)]) self.assertEqual([o["is_last"] for o in outs], [False, True]) # two chunks incomplete last outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0, ratio)) self.assertEqual(len(outs), 2) self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)]) self.assertEqual([o["is_last"] for o in outs], [False, True]) # one chunk since first is also last, because it contains only data # in the right strided part we just mark that part as non stride # This test is specifically crafted to trigger a bug if next chunk # would be ignored by the fact that all the data would be # contained in the strided left data. outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5, ratio)) self.assertEqual(len(outs), 1) self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)]) self.assertEqual([o["is_last"] for o in outs], [True]) @require_torch def test_chunk_iterator_stride(self): feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") inputs = torch.arange(100).long() input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[ "input_values" ] ratio = 1 outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10, ratio)) self.assertEqual(len(outs), 2) self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)]) self.assertEqual([o["is_last"] for o in outs], [False, True]) outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10, ratio)) self.assertEqual(len(outs), 2) self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)]) self.assertEqual([o["is_last"] for o in outs], [False, True]) outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0, ratio)) self.assertEqual(len(outs), 2) self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)]) outs = list(chunk_iter(inputs, feature_extractor, 36, 6, 6, ratio)) self.assertEqual(len(outs), 4) self.assertEqual([o["stride"] for o in outs], [(36, 0, 6), (36, 6, 6), (36, 6, 6), (28, 6, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 36), (1, 36), (1, 36), (1, 28)]) inputs = torch.LongTensor([i % 2 for i in range(100)]) input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[ "input_values" ] outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5, ratio)) self.assertEqual(len(outs), 5) self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)]) self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)]) self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True]) # (0, 25) self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"])) # (25, 45) self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"])) # (45, 65) self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"])) # (65, 85) self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"])) # (85, 100) self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"])) @require_torch def test_stride(self): speech_recognizer = pipeline( task="automatic-speech-recognition", model="hf-internal-testing/tiny-random-wav2vec2", ) waveform = np.tile(np.arange(1000, dtype=np.float32), 10) output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000}) self.assertEqual(output, {"text": "OB XB B EB BB B EB B OB X"}) # 0 effective ids Just take the middle one output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000}) self.assertEqual(output, {"text": ""}) # Only 1 arange. output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000}) self.assertEqual(output, {"text": "OB"}) # 2nd arange output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000}) self.assertEqual(output, {"text": "XB"}) @slow @require_torch_gpu def test_slow_unfinished_sequence(self): from transformers import GenerationConfig pipe = pipeline( "automatic-speech-recognition", model="vasista22/whisper-hindi-large-v2", device="cuda:0", ) # Original model wasn't trained with timestamps and has incorrect generation config pipe.model.generation_config = GenerationConfig.from_pretrained("openai/whisper-large-v2") audio = hf_hub_download("Narsil/asr_dummy", filename="hindi.ogg", repo_type="dataset") out = pipe( audio, return_timestamps=True, ) self.assertEqual( out, { "chunks": [ {"text": "", "timestamp": (18.94, 0.0)}, {"text": "मिर्ची में कितने विभिन्न प्रजातियां हैं", "timestamp": (None, None)}, ], "text": "मिर्ची में कितने विभिन्न प्रजातियां हैं", }, ) def require_ffmpeg(test_case): """ Decorator marking a test that requires FFmpeg. These tests are skipped when FFmpeg isn't installed. """ import subprocess try: subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL) return test_case except Exception: return unittest.skip("test requires ffmpeg")(test_case) def bytes_iter(chunk_size, chunks): for i in range(chunks): yield bytes(range(i * chunk_size, (i + 1) * chunk_size)) @require_ffmpeg class AudioUtilsTest(unittest.TestCase): def test_chunk_bytes_iter_too_big(self): iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0))) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)}) with self.assertRaises(StopIteration): next(iter_) def test_chunk_bytes_iter(self): iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0))) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)}) self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)}) with self.assertRaises(StopIteration): next(iter_) def test_chunk_bytes_iter_stride(self): iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1))) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)}) self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)}) self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)}) # This is finished, but the chunk_bytes doesn't know it yet. self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)}) self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)}) with self.assertRaises(StopIteration): next(iter_) def test_chunk_bytes_iter_stride_stream(self): iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True)) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True}) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False}) self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False}) with self.assertRaises(StopIteration): next(iter_) iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True)) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True}) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False}) self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False}) self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False}) with self.assertRaises(StopIteration): next(iter_) iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True)) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True}) self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True}) self.assertEqual( next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True} ) self.assertEqual( next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False} ) with self.assertRaises(StopIteration): next(iter_)