Spaces:
Running
Running
File size: 5,575 Bytes
63a3448 3e60998 12fa10e 40bfc4e 591c7b1 a83c936 9c95830 df37b63 12fa10e 5101abe 9c95830 288b3a4 63a3448 ff71cd5 12fa10e ff71cd5 12fa10e ff71cd5 12fa10e ff71cd5 12fa10e ff71cd5 c1ccf5a 12fa10e c1ccf5a ff71cd5 288b3a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models
import asyncio
from externalmod import gr_Interface_load, save_image, randomize_seed
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.getenv("ohgoddamn")
default_models = models[:num_models]
def get_current_time():
from datetime import datetime
now = datetime.now()
current_time = now.strftime("%y-%m-%d %H:%M:%S")
return current_time
def load_fn(models, HF_TOKEN):
global models_load
models_load = {}
for model in models:
if model not in models_load:
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
models_load[model] = m.fn # Store the callable
except Exception as error:
print(error)
models_load[model] = lambda **kwargs: None
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=120, hf_token=None):
print(f"{prompt}\n{model_str}\n{timeout}\n")
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: kwargs["guidance_scale"] = cfg
kwargs["negative_prompt"] = nprompt
theSeed = randomize_seed() if seed == -1 else seed
kwargs["seed"] = theSeed
if hf_token:
kwargs["token"] = hf_token
try:
task = asyncio.create_task(asyncio.to_thread(models_load[model_str], prompt=prompt, **kwargs))
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(f"Timeout: {model_str}")
if not task.done(): task.cancel()
raise Exception(f"Timeout: {model_str}") from e
except Exception as e:
print(f"Exception: {model_str} -> {e}")
if not task.done(): task.cancel()
raise Exception(f"Inference failed: {model_str}") from e
if result is not None and not isinstance(result, tuple):
with lock:
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, inference_timeout2=120):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout2, HF_TOKEN))
except Exception as e:
print(f"gen_fn: Task aborted: {model_str} -> {e}")
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
'''
def load_fn(models,HF_TOKEN):
global models_load
models_load = {}
for model in models:
if model not in models_load.keys():
try:
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
except Exception as error:
print(error)
m = gr.Interface(lambda: None, ['text'], ['image'])
models_load.update({model: m})
async def infer(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
print(f"{prompt}\n")
print(f"{model_str}\n")
print(f"{timeout}\n")
kwargs = {}
if height > 0: kwargs["height"] = height
if width > 0: kwargs["width"] = width
if steps > 0: kwargs["num_inference_steps"] = steps
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
if seed == -1:
theSeed = randomize_seed()
else:
theSeed = seed
kwargs["seed"] = theSeed
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
print(f"await")
await asyncio.sleep(20)
try:
result = await asyncio.wait_for(task, timeout=timeout)
except asyncio.TimeoutError as e:
print(e)
print(f"infer: Task timed out: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception(f"Task timed out: {model_str}") from e
except Exception as e:
print(e)
print(f"infer: exception: {model_str}")
if not task.done(): task.cancel()
result = None
raise Exception() from e
if task.done() and result is not None and not isinstance(result, tuple):
print(f"{result}")
with lock:
png_path = model_str.replace("/", "_") + " - " + get_current_time() + "_" + str(theSeed) + ".png"
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, steps, cfg, theSeed)
return image
return None
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, inference_timeout2=120):
try:
loop = asyncio.new_event_loop()
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
height, width, steps, cfg, seed, inference_timeout2))
except (Exception, asyncio.CancelledError) as e:
print(e)
print(f"gen_fn: Task aborted: {model_str}")
result = None
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
finally:
loop.close()
return result
''' |