File size: 18,065 Bytes
0af19e2
e875a46
b89240a
c185d6e
9133955
 
8444935
d80ea07
8444935
 
 
9133955
a059085
9133955
621e5a5
0af19e2
e93f221
e62b07b
746d932
 
a418426
a058847
 
 
746d932
 
 
 
dfb429c
c1158cf
15f391f
 
 
 
 
 
 
 
 
3d5b3d4
 
0af19e2
746d932
 
e62b07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746d932
 
 
e62b07b
 
746d932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe7af7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746d932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9836c1f
746d932
 
 
 
 
9836c1f
 
 
 
 
db97019
9836c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746d932
 
 
 
9836c1f
db97019
746d932
db97019
746d932
9836c1f
 
3c6753c
9836c1f
 
 
746d932
 
 
 
 
 
9836c1f
746d932
9836c1f
 
3cc7736
 
 
a058847
3d5b3d4
 
 
 
 
 
c6217e4
0af19e2
 
0ed58ab
0af19e2
 
e8d215b
 
0af19e2
 
 
 
 
 
 
 
 
c6217e4
0ed58ab
0af19e2
 
 
c6217e4
0af19e2
 
 
 
 
 
c6217e4
0af19e2
 
3d5b3d4
 
 
 
 
 
0af19e2
 
 
2fb46eb
9836c1f
9133955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import gradio as gr
from huggingface_hub import HfApi, whoami, InferenceClient
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models 
import asyncio
import os
import logging
from fastapi import HTTPException
import http.client
import json
import ssl
import pandas as pd
import re
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("ohgoddamn") if os.environ.get("ohgoddamn") else None # If private or gated models aren't used, ENV setting is unnecessary.
token=  os.environ.get("ohgoddamn") if os.environ.get("ohgoddamn") else None # If private or gated models aren't used, ENV setting is unnecessary.

stop_event = asyncio.Event()
default_models = models[:howManyModelsToUse]
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
print(f"{username}")
print(f"{username}")
print(f"{username}")
print(f"{username}")
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed
def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)





url = "https://api-inference.huggingface.co/models/charliebaby2023/cybrpny"
headers = {    "Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers)
print(response.status_code)
print(response.text)


load_fn(models,HF_TOKEN)


#client = InferenceClient(    provider="hf-inference",    api_key=HF_TOKEN,)
#image = client.text_to_image(    "Astronaut riding a horse",    model="charliebaby2023/cybrpny",)
#print(f"{image}")
model_id = "CompVis/stable-diffusion-v1-4-original"
endpoint = f"/models/{model_id}"

# === CONFIG ===
host = "api-inference.huggingface.co"
#endpoint = "/models/charliebaby2023/cybrpny"
#token = HF_TOKEN 
prompt = "a futuristic city on Mars at sunset"

# === REQUEST SETUP ===
body = json.dumps({
    "inputs": prompt
})
headers = {
    "Authorization": f"Bearer {token}",
    "Content-Type": "application/json",
    "User-Agent": "PythonRawClient/1.0"
}

# === CONNECTION ===
context = ssl.create_default_context()
conn = http.client.HTTPSConnection(host, context=context)

# === RAW REQUEST ===
print("🔸 REQUEST LINE:")
print(f"POST {endpoint} HTTP/1.1")
print(f"Host: {host}")
for key, value in headers.items():
    print(f"{key}: {value}")
print(f"\n{body}\n")

# Send request
conn.request("POST", endpoint, body=body, headers=headers)

# === RAW RESPONSE ===
response = conn.getresponse()
print("🔹 STATUS:", response.status, response.reason)
print("🔹 RESPONSE HEADERS:")
for hdr in response.getheaders():
    print(f"{hdr[0]}: {hdr[1]}")
print("\n🔹 RESPONSE BODY (raw):")
raw = response.read()
try:
    print(raw.decode("utf-8")[:1000])  # print first 1k chars
except UnicodeDecodeError:
    print("[binary data]")



def query_model(model_name,prompt):
    logs = []
    img_out = None

    host = "api-inference.huggingface.co"
    endpoint = f"/models/{model_name}"
    # Prepare request
    body = json.dumps({"inputs": prompt})
    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json",
        "User-Agent": "PythonRawClient/1.0"
    }

    # Connect
    context = ssl.create_default_context()
    conn = http.client.HTTPSConnection(host, context=context)

    logs.append(f"📤 POST {endpoint}")
    logs.append(f"Headers: {headers}")
    logs.append(f"Body: {body}\n")

    try:
        
        conn.request("POST", endpoint, body=body, headers=headers)
        response = conn.getresponse()

        logs.append(f"📥 Status: {response.status} {response.reason}")
        logs.append("Headers:")
        for k, v in response.getheaders():
            logs.append(f"{k}: {v}")

        raw = response.read()

        try:
            text = raw.decode("utf-8")
            result = json.loads(text)
            logs.append("\nBody:\n" + text[:1000])
        except:
            result = raw
            logs.append("\n⚠️ Binary response.")

        # === HANDLE RESPONSE ===
        def show(img_bytes):
            try:
                img = Image.open(BytesIO(img_bytes))
                return img
            except Exception as e:
                logs.append(f"❌ Failed to open image: {e}")
                return None

        if isinstance(result, dict):
            if "image" in result:
                logs.append("🧠 Found base64 image in 'image'")
                return show(base64.b64decode(result["image"])), "\n".join(logs)

            elif "url" in result or "image_url" in result:
                url = result.get("url") or result.get("image_url")
                logs.append(f"🌐 Found image URL: {url}")
                r = requests.get(url)
                return show(r.content), "\n".join(logs)

            else:
                logs.append("⚠️ No image found in response.")
                return None, "\n".join(logs)

        elif isinstance(result, bytes):
            logs.append("🧾 Raw image bytes returned.")
            return show(result), "\n".join(logs)

        else:
            logs.append("❌ Unknown response format.")
            return None, "\n".join(logs)

    except Exception as e:
        logs.append(f"💥 Exception: {e}")
        return None, "\n".join(logs)


# === GRADIO UI ===



def query_model2(model_name, prompt):
    logs = []
    img_out = None
    try:
        model = gr.Interface.load(f"models/{model_name}", token=HF_TOKEN)
        logs.append(f"Prompt: {prompt}")
        response = model.predict(prompt)
        logs.append(f"Model response: {response}")
        def get_image_from_response(response):
            if isinstance(response, dict):
                if "image" in response:
                    img_data = base64.b64decode(response["image"])
                    img = Image.open(BytesIO(img_data))
                    return img
                elif "url" in response or "image_url" in response:
                    url = response.get("url") or response.get("image_url")
                    img_data = requests.get(url).content
                    img = Image.open(BytesIO(img_data))
                    return img
            elif isinstance(response, bytes):
                img = Image.open(BytesIO(response))
                return img
            return None
        img_out = get_image_from_response(response)
    except Exception as e:
        logs.append(f"Error: {e}")
        response = None
    return img_out, "\n".join(logs)

  


#print(f"Time launched: {hms()}")
pattern = r'HTTP/1\.1" (\d{3}) \d+'
class ErrorCodeLogHandler(logging.Handler):
    def __init__(self):
        super().__init__()
        self.last_error_code = None  # Store the last error code #printed
        self.model_name_pattern = r'Model\s+(\S+)'  # Pattern to extract model name (adjust this regex to your needs)
    def emit(self, record):
        log_message = self.format(record)  # Get the log message from the record
        error_code = self.extract_error_code(log_message)  # Extract error code
        model_name = self.extract_model_name(log_message)  # Extract model name
        if error_code and error_code != self.last_error_code:
            #print(f'Error code: {error_code} | Model: {model_name}')  # #print both error code and model name
            self.last_error_code = error_code  # Update the last #printed error code
    def extract_error_code(self, log_message):
        match = re.search(pattern, log_message)
        if match:
            return match.group(1)  # Return the current error code
        return None  # Return None if no match is found
    def extract_model_name(self, log_message):
        match = re.search(self.model_name_pattern, log_message)
        if match:
            return match.group(1)  # Return the model name or identifier
        return "Unknown model"  # Return a default value if no model name is found




def debugon():
    print(f"DEBUGGING MODE : ON ")
    logging.basicConfig(level=logging.DEBUG, format='%(message)s')
    error_handler = ErrorCodeLogHandler()
    print(f"{error_handler}")
    logging.getLogger().addHandler(error_handler)
def debugoff():
    print(f"DEBUGGING MODE : OFF ")
    logging.basicConfig(level=logging.WARNING, format='%(message)s')
    error_handler = ErrorCodeLogHandler()
    print(f"{error_handler}")
    logging.getLogger().addHandler(error_handler)    
def handle_debug_mode(selected_option):
    if selected_option == "debug on":
        debugon()
    else:
        debugoff()



def stop_all_tasks():
    print("Stopping...")
    stop_event.set()



with gr.Blocks(fill_width=True) as demo:
   with gr.Tab(label="DEBUG"):
    with gr.Row():
        radio = gr.Radio(["debug on", "debug off"], value="debug off",  label="   Debug mode: activated in output log", interactive=True)
        radio.change(handle_debug_mode, radio, None)  

    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                timeout = gr.Slider(label="Timeout (seconds)", minimum=5, maximum=300, value=120, step=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        #for m, o in zip(current_models, output):
        #    gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
        #                      inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
        #                      concurrency_limit=None, queue=False)
        for m, o in zip(current_models, output):
            gen_button.click(        fn=gen_fn,        inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed, timeout],        outputs=[o],queue=False)
            #concurrency_limit=None,
            txt_input.submit(        fn=gen_fn,        inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed, timeout],        outputs=[o],queue=False)
    
        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)
        stop_button = gr.Button("Stop 🛑", variant="stop")
        stop_button.click(
            fn=stop_all_tasks,
            inputs=[],
            outputs=[]
        )        

demo.launch(show_api=True, max_threads=400)


'''
with gr.Blocks(fill_width=True) as demo:
    with gr.Row():
        gr.Markdown(f"# ({username}) you are logged in")
        #model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models",        interactive=True,    )
        #output_box = gr.Textbox(lines=10, label="Selected Models")
        #model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)   
        source_selector = gr.CheckboxGroup(choices=source_choices, label="Model Source", value=["Combined"], interactive=True)
        
        output = gr.Textbox(label="Selected Model Summary")
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                    with gr.Row():    
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]
        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                #model_choice.change(update_imgbox, model_choice, output)
                #model_choice.change(extend_choices, model_choice, current_models)
                model_choice = gr.CheckboxGroup(choices=combined_models, label="Models", value=combined_models[:20], interactive=True)
                source_selector.change(update_model_choice, source_selector, model_choice)
                model_choice.change(handle_model_selection, model_choice, output)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)
    
            '''



















'''

# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
    "Last Modified": space.lastModified,} for space in spaces])

def load_space_files(evt: gr.SelectData):
    clicked_html = evt.value
    space_id = clicked_html.split("data-space='")[1].split("'")[0]
    files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
    file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
    } for file in files])
    return file_df

# --- Step 4: Build Gradio interface
    gr.Markdown(f"# Hugging Face Spaces for `{username}`")
    with gr.Row():
        left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
            interactive=False,  datatype="str", max_rows=len(space_df), wrap=True )
        right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
            label="Files in Selected Space",  interactive=False, wrap=True )

    left_df.select(fn=load_space_files, outputs=right_df)
'''