File size: 6,149 Bytes
0af19e2
a058847
976f5dd
b89240a
0c506f4
9133955
 
 
 
621e5a5
0af19e2
 
a058847
 
 
 
c1158cf
 
 
 
a058847
4a26907
2102432
 
a058847
 
 
 
 
 
 
3cc7736
0af19e2
0ed58ab
 
c6217e4
0ed58ab
0af19e2
 
 
caac55e
3cc7736
 
 
 
a058847
 
 
3cc7736
c6217e4
0af19e2
 
0ed58ab
0af19e2
 
e8d215b
 
0af19e2
 
 
 
 
 
 
 
 
c6217e4
0ed58ab
0af19e2
 
 
c6217e4
0af19e2
 
 
 
 
 
c6217e4
0af19e2
 
 
 
 
 
2fb46eb
cd37c13
0af19e2
 
9133955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from huggingface_hub import HfApi, whoami
from all_models import models
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
default_models = models[:num_models]
import asyncio
import os
import pandas as pd
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# --- Step 2: Authenticate and fetch your models
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed
from handlemodelradio import extend_choices,update_imgbox,random_choices
#anything but huggingface_hub==0.26.2 will result in token error
# Get all models owned by the user
#models = api.list_models(author=username, token=HF_TOKEN)
mymodels = list(api.list_models(author=username, token=HF_TOKEN))
model_ids = [m.modelId for m in mymodels]
if not model_ids:
    raise ValueError(f"No models found for user '{username}'")
# --- Step 3: Build Gradio UI
def handle_model_selection(selected_models):
    if not selected_models:
        return "No models selected."
    return "✅ Selected models:\n" + "\n".join(selected_models)


def get_current_time():
    now = datetime.now()
    current_time = now.strftime("%y-%m-%d %H:%M:%S")
    return current_time
load_fn(models)


'''
 
'''
with gr.Blocks(fill_width=True) as demo:
    with gr.Row():
        gr.Markdown(f"# ({username}) you are logged in")
        model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models",        interactive=True,    )
        output_box = gr.Textbox(lines=10, label="Selected Models")
        model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)   
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                    with gr.Row():    
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]
        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)
    
            

demo.launch(show_api=False, max_threads=400)



















'''

# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
    "Last Modified": space.lastModified,} for space in spaces])

def load_space_files(evt: gr.SelectData):
    clicked_html = evt.value
    space_id = clicked_html.split("data-space='")[1].split("'")[0]
    files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
    file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
    } for file in files])
    return file_df

# --- Step 4: Build Gradio interface
    gr.Markdown(f"# Hugging Face Spaces for `{username}`")
    with gr.Row():
        left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
            interactive=False,  datatype="str", max_rows=len(space_df), wrap=True )
        right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
            label="Files in Selected Space",  interactive=False, wrap=True )

    left_df.select(fn=load_space_files, outputs=right_df)
'''