Spaces:
Running
Running
File size: 9,379 Bytes
0af19e2 a058847 b89240a c185d6e 9133955 621e5a5 0af19e2 a058847 c185d6e a418426 a058847 dfb429c c1158cf 15f391f 3d5b3d4 3c6753c 0af19e2 caac55e 3cc7736 9836c1f c185d6e 9836c1f f258e47 9836c1f 3c6753c 9836c1f 3cc7736 a058847 3d5b3d4 c6217e4 0af19e2 0ed58ab 0af19e2 e8d215b 0af19e2 c6217e4 0ed58ab 0af19e2 c6217e4 0af19e2 c6217e4 0af19e2 3d5b3d4 0af19e2 2fb46eb 9836c1f 9133955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
from huggingface_hub import HfApi, whoami
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models
import asyncio
import os
import pandas as pd
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# --- Step 2: Authenticate and fetch your models
default_models = models[:howManyModelsToUse]
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
load_fn(models,HF_TOKEN)
'''
'''
with gr.Blocks(fill_width=True) as demo:
with gr.Tab(str(num_models) + ' Models'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
interactive=False, width=112, height=112, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False)
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=models, interactive=True)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
demo.launch(show_api=False, max_threads=400)
'''
with gr.Blocks(fill_width=True) as demo:
with gr.Row():
gr.Markdown(f"# ({username}) you are logged in")
#model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models", interactive=True, )
#output_box = gr.Textbox(lines=10, label="Selected Models")
#model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)
source_selector = gr.CheckboxGroup(choices=source_choices, label="Model Source", value=["Combined"], interactive=True)
output = gr.Textbox(label="Selected Model Summary")
with gr.Tab(str(num_models) + ' Models'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
interactive=False, width=112, height=112, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False)
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
#model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
#model_choice.change(update_imgbox, model_choice, output)
#model_choice.change(extend_choices, model_choice, current_models)
model_choice = gr.CheckboxGroup(choices=combined_models, label="Models", value=combined_models[:20], interactive=True)
source_selector.change(update_model_choice, source_selector, model_choice)
model_choice.change(handle_model_selection, model_choice, output)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
'''
'''
# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
"Last Modified": space.lastModified,} for space in spaces])
def load_space_files(evt: gr.SelectData):
clicked_html = evt.value
space_id = clicked_html.split("data-space='")[1].split("'")[0]
files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
} for file in files])
return file_df
# --- Step 4: Build Gradio interface
gr.Markdown(f"# Hugging Face Spaces for `{username}`")
with gr.Row():
left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
interactive=False, datatype="str", max_rows=len(space_df), wrap=True )
right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
label="Files in Selected Space", interactive=False, wrap=True )
left_df.select(fn=load_space_files, outputs=right_df)
''' |