File size: 9,379 Bytes
0af19e2
a058847
b89240a
c185d6e
9133955
 
 
 
621e5a5
0af19e2
 
a058847
c185d6e
a418426
a058847
 
 
dfb429c
c1158cf
15f391f
 
 
 
 
 
 
 
 
3d5b3d4
 
3c6753c
0af19e2
 
caac55e
3cc7736
9836c1f
 
c185d6e
 
9836c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f258e47
9836c1f
 
 
3c6753c
9836c1f
 
 
 
 
 
 
3cc7736
 
 
a058847
3d5b3d4
 
 
 
 
 
c6217e4
0af19e2
 
0ed58ab
0af19e2
 
e8d215b
 
0af19e2
 
 
 
 
 
 
 
 
c6217e4
0ed58ab
0af19e2
 
 
c6217e4
0af19e2
 
 
 
 
 
c6217e4
0af19e2
 
3d5b3d4
 
 
 
 
 
0af19e2
 
 
2fb46eb
9836c1f
9133955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
from huggingface_hub import HfApi, whoami
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models 
import asyncio
import os
import pandas as pd
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# --- Step 2: Authenticate and fetch your models

default_models = models[:howManyModelsToUse]
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed
def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)


load_fn(models,HF_TOKEN)


'''
 
'''



with gr.Blocks(fill_width=True) as demo:
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)

        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]

        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
            

        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=models, interactive=True)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)

demo.launch(show_api=False, max_threads=400)


'''
with gr.Blocks(fill_width=True) as demo:
    with gr.Row():
        gr.Markdown(f"# ({username}) you are logged in")
        #model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models",        interactive=True,    )
        #output_box = gr.Textbox(lines=10, label="Selected Models")
        #model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)   
        source_selector = gr.CheckboxGroup(choices=source_choices, label="Model Source", value=["Combined"], interactive=True)
        
        output = gr.Textbox(label="Selected Model Summary")
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                    with gr.Row():    
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]
        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                #model_choice.change(update_imgbox, model_choice, output)
                #model_choice.change(extend_choices, model_choice, current_models)
                model_choice = gr.CheckboxGroup(choices=combined_models, label="Models", value=combined_models[:20], interactive=True)
                source_selector.change(update_model_choice, source_selector, model_choice)
                model_choice.change(handle_model_selection, model_choice, output)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)
    
            '''



















'''

# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
    "Last Modified": space.lastModified,} for space in spaces])

def load_space_files(evt: gr.SelectData):
    clicked_html = evt.value
    space_id = clicked_html.split("data-space='")[1].split("'")[0]
    files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
    file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
    } for file in files])
    return file_df

# --- Step 4: Build Gradio interface
    gr.Markdown(f"# Hugging Face Spaces for `{username}`")
    with gr.Row():
        left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
            interactive=False,  datatype="str", max_rows=len(space_df), wrap=True )
        right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
            label="Files in Selected Space",  interactive=False, wrap=True )

    left_df.select(fn=load_space_files, outputs=right_df)
'''