Spaces:
Running
Running
File size: 8,560 Bytes
0af19e2 a058847 b89240a 3d5b3d4 9133955 621e5a5 0af19e2 a058847 dfb429c c1158cf 15f391f c1158cf 3d5b3d4 a058847 48bacc3 a058847 3d5b3d4 15f391f 3d5b3d4 a058847 3cc7736 3d5b3d4 48bacc3 3d5b3d4 e00c92a 3d5b3d4 48bacc3 3d5b3d4 0af19e2 3d5b3d4 0af19e2 caac55e 3cc7736 a058847 3d5b3d4 c6217e4 0af19e2 0ed58ab 0af19e2 e8d215b 0af19e2 c6217e4 0ed58ab 0af19e2 c6217e4 0af19e2 c6217e4 0af19e2 3d5b3d4 0af19e2 2fb46eb cd37c13 0af19e2 9133955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
from huggingface_hub import HfApi, whoami
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models as static_models
import asyncio
import os
import pandas as pd
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# --- Step 2: Authenticate and fetch your models
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed
#anything but huggingface_hub==0.26.2 will result in token error
#mymodels = list(api.list_models(author=username, token=HF_TOKEN))
#model_ids = [m.modelId for m in mymodels]
user_model_objs = list(api.list_models(author=username, token=HF_TOKEN))
user_models = [m.modelId for m in user_model_objs]
if not user_models:
raise ValueError(f"No models found for user '{username}'")
combined_models = list(dict.fromkeys(static_models + user_models))
default_models = combined_models[:howManyModelsToUse]
# --- Step 3: Build Gradio UI
#def handle_model_selection(selected_models):
# if not selected_models:
# return "No models selected."
# return "✅ Selected models:\n" + "\n".join(selected_models)
def extend_choices(choices):
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
choices_plus = extend_choices(choices[:num_models])
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
import random
random.seed()
return random.choices(models, k=num_models)
def get_authors(model_list):
return sorted(set(model.split("/")[0] for model in model_list if "/" in model))
static_authors = get_authors(static_models)
user_authors = get_authors(user_models)
combined_authors = get_authors(combined_models)
all_author_options = sorted(set(static_authors + user_authors + combined_authors))
source_choices = ["All Models", "My Models", "Combined"] + all_author_options
def filter_models(source):
if source == "All Models":
return static_models
elif source == "My Models":
return user_models
elif source == "Combined":
return combined_models
elif source in all_author_options:
return [m for m in combined_models if m.startswith(f"{source}/")]
return []
def handle_model_selection(selected_models):
if not selected_models:
return "No models selected."
return "✅ Selected models:\n" + "\n".join(selected_models)
def update_model_choice(sources):
global default_models
if not sources:
return gr.update(choices=[], value=[])
model_set = set()
for s in sources:
model_set.update(filter_models(s))
sorted_models = sorted(model_set)
default_models = sorted_models[:howManyModelsToUse]
return gr.update(choices=sorted_models, value=default_models)
load_fn(combined_models,HF_TOKEN)
'''
'''
with gr.Blocks(fill_width=True) as demo:
with gr.Row():
gr.Markdown(f"# ({username}) you are logged in")
#model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models", interactive=True, )
#output_box = gr.Textbox(lines=10, label="Selected Models")
#model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)
source_selector = gr.CheckboxGroup(choices=source_choices, label="Model Source", value=["Combined"], interactive=True)
output = gr.Textbox(label="Selected Model Summary")
with gr.Tab(str(num_models) + ' Models'):
with gr.Column(scale=2):
with gr.Group():
txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
with gr.Accordion("Advanced", open=False, visible=True):
with gr.Row():
neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
with gr.Row():
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
with gr.Row():
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
seed_rand.click(randomize_seed, None, [seed], queue=False)
with gr.Row():
gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
interactive=False, width=112, height=112, show_share_button=False, format="png",
visible=True) for m in default_models]
current_models = [gr.Textbox(m, visible=False) for m in default_models]
for m, o in zip(current_models, output):
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
concurrency_limit=None, queue=False)
with gr.Column(scale=4):
with gr.Accordion('Model selection'):
#model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
#model_choice.change(update_imgbox, model_choice, output)
#model_choice.change(extend_choices, model_choice, current_models)
model_choice = gr.CheckboxGroup(choices=combined_models, label="Models", value=combined_models[:20], interactive=True)
source_selector.change(update_model_choice, source_selector, model_choice)
model_choice.change(handle_model_selection, model_choice, output)
model_choice.change(update_imgbox, model_choice, output)
model_choice.change(extend_choices, model_choice, current_models)
random_button.click(random_choices, None, model_choice)
demo.launch(show_api=False, max_threads=400)
'''
# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
"Last Modified": space.lastModified,} for space in spaces])
def load_space_files(evt: gr.SelectData):
clicked_html = evt.value
space_id = clicked_html.split("data-space='")[1].split("'")[0]
files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
} for file in files])
return file_df
# --- Step 4: Build Gradio interface
gr.Markdown(f"# Hugging Face Spaces for `{username}`")
with gr.Row():
left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
interactive=False, datatype="str", max_rows=len(space_df), wrap=True )
right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
label="Files in Selected Space", interactive=False, wrap=True )
left_df.select(fn=load_space_files, outputs=right_df)
''' |