File size: 8,560 Bytes
0af19e2
a058847
b89240a
3d5b3d4
9133955
 
 
 
621e5a5
0af19e2
 
a058847
 
 
 
dfb429c
c1158cf
15f391f
c1158cf
3d5b3d4
 
 
 
 
 
a058847
48bacc3
 
 
a058847
3d5b3d4
 
 
 
 
15f391f
 
 
 
 
 
 
 
 
3d5b3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a058847
 
 
 
3cc7736
3d5b3d4
48bacc3
3d5b3d4
e00c92a
3d5b3d4
 
 
 
48bacc3
 
3d5b3d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af19e2
3d5b3d4
0af19e2
 
caac55e
3cc7736
 
 
 
a058847
3d5b3d4
 
 
 
 
 
c6217e4
0af19e2
 
0ed58ab
0af19e2
 
e8d215b
 
0af19e2
 
 
 
 
 
 
 
 
c6217e4
0ed58ab
0af19e2
 
 
c6217e4
0af19e2
 
 
 
 
 
c6217e4
0af19e2
 
3d5b3d4
 
 
 
 
 
0af19e2
 
 
2fb46eb
cd37c13
0af19e2
 
9133955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import gradio as gr
from huggingface_hub import HfApi, whoami
from config import howManyModelsToUse,num_models,max_images,inference_timeout,MAX_SEED,thePrompt,preSetPrompt,negPreSetPrompt
from all_models import models as static_models
import asyncio
import os
import pandas as pd
from datetime import datetime
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
# --- Step 2: Authenticate and fetch your models
api = HfApi()
user_info = whoami(token=HF_TOKEN)
username = user_info["name"]
from handle_models import load_fn,infer,gen_fn
from externalmod import gr_Interface_load, save_image, randomize_seed

#anything but huggingface_hub==0.26.2 will result in token error
#mymodels = list(api.list_models(author=username, token=HF_TOKEN))
#model_ids = [m.modelId for m in mymodels]

user_model_objs = list(api.list_models(author=username, token=HF_TOKEN))
user_models = [m.modelId for m in user_model_objs]
if not user_models:
    raise ValueError(f"No models found for user '{username}'")

combined_models = list(dict.fromkeys(static_models + user_models))
default_models = combined_models[:howManyModelsToUse]
# --- Step 3: Build Gradio UI
#def handle_model_selection(selected_models):
#    if not selected_models:
#        return "No models selected."
#    return "✅ Selected models:\n" + "\n".join(selected_models)

def extend_choices(choices):
    return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA']
def update_imgbox(choices):
    choices_plus = extend_choices(choices[:num_models])
    return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
def random_choices():
    import random
    random.seed()
    return random.choices(models, k=num_models)



def get_authors(model_list):
    return sorted(set(model.split("/")[0] for model in model_list if "/" in model))

static_authors = get_authors(static_models)
user_authors = get_authors(user_models)
combined_authors = get_authors(combined_models)
all_author_options = sorted(set(static_authors + user_authors + combined_authors))
source_choices = ["All Models", "My Models", "Combined"] + all_author_options


def filter_models(source):
    if source == "All Models":
        return static_models
    elif source == "My Models":
        return user_models
    elif source == "Combined":
        return combined_models
    elif source in all_author_options:
        return [m for m in combined_models if m.startswith(f"{source}/")]
    return []


def handle_model_selection(selected_models):
    if not selected_models:
        return "No models selected."
    return "✅ Selected models:\n" + "\n".join(selected_models)

def update_model_choice(sources):
            global default_models
            if not sources:
                return gr.update(choices=[], value=[])
            model_set = set()
            for s in sources:
                model_set.update(filter_models(s))
            sorted_models = sorted(model_set)
            default_models = sorted_models[:howManyModelsToUse]
            return gr.update(choices=sorted_models, value=default_models)

        
        















load_fn(combined_models,HF_TOKEN)


'''
 
'''
with gr.Blocks(fill_width=True) as demo:
    with gr.Row():
        gr.Markdown(f"# ({username}) you are logged in")
        #model_selector = gr.CheckboxGroup(choices=model_ids,value=model_ids, label="your models",        interactive=True,    )
        #output_box = gr.Textbox(lines=10, label="Selected Models")
        #model_selector.change(fn=handle_model_selection, inputs=model_selector, outputs=output_box)   
        source_selector = gr.CheckboxGroup(choices=source_choices, label="Model Source", value=["Combined"], interactive=True)
        
        output = gr.Textbox(label="Selected Model Summary")
    with gr.Tab(str(num_models) + ' Models'):
        with gr.Column(scale=2):
            with gr.Group():
                txt_input = gr.Textbox(label='Your prompt:', value=preSetPrompt, lines=3, autofocus=1)
                with gr.Accordion("Advanced", open=False, visible=True):
                    with gr.Row():
                        neg_input = gr.Textbox(label='Negative prompt:', value=negPreSetPrompt, lines=1)
                    with gr.Row():    
                        width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                    with gr.Row():
                        steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                        cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                        seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                        seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
                        seed_rand.click(randomize_seed, None, [seed], queue=False)
            with gr.Row():
                gen_button = gr.Button(f'Generate up to {int(num_models)} images', variant='primary', scale=3, elem_classes=["butt"])
                random_button = gr.Button(f'Randomize Models', variant='secondary', scale=1)
        with gr.Column(scale=1):
            with gr.Group():
                with gr.Row():
                    output = [gr.Image(label=m, show_download_button=True, elem_classes=["image-monitor"],
                              interactive=False, width=112, height=112, show_share_button=False, format="png",
                              visible=True) for m in default_models]
                    current_models = [gr.Textbox(m, visible=False) for m in default_models]
        for m, o in zip(current_models, output):
            gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                              inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o],
                              concurrency_limit=None, queue=False)
        with gr.Column(scale=4):
            with gr.Accordion('Model selection'):
                #model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True)
                #model_choice.change(update_imgbox, model_choice, output)
                #model_choice.change(extend_choices, model_choice, current_models)
                model_choice = gr.CheckboxGroup(choices=combined_models, label="Models", value=combined_models[:20], interactive=True)
                source_selector.change(update_model_choice, source_selector, model_choice)
                model_choice.change(handle_model_selection, model_choice, output)
                model_choice.change(update_imgbox, model_choice, output)
                model_choice.change(extend_choices, model_choice, current_models)
                random_button.click(random_choices, None, model_choice)
    
            

demo.launch(show_api=False, max_threads=400)



















'''

# --- Step 2: Fetch user's Spaces
spaces = list(api.list_spaces(author=username, token=HF_TOKEN))
space_df = pd.DataFrame([{"Space Name": f"<a href='#' data-space='{space.id}'>{space.id.split('/')[-1]}</a>",
    "Last Modified": space.lastModified,} for space in spaces])

def load_space_files(evt: gr.SelectData):
    clicked_html = evt.value
    space_id = clicked_html.split("data-space='")[1].split("'")[0]
    files = api.list_repo_files(repo_id=space_id, repo_type="space", token=HF_TOKEN)
    file_df = pd.DataFrame([{ "File": f"<a href='https://huggingface.co/spaces/{username}/{space_id.split('/')[-1]}/edit/main/{file}' target='_blank'>{file}</a>"
    } for file in files])
    return file_df

# --- Step 4: Build Gradio interface
    gr.Markdown(f"# Hugging Face Spaces for `{username}`")
    with gr.Row():
        left_df = gr.Dataframe(value=space_df, label="Your Spaces (click a name)",
            interactive=False,  datatype="str", max_rows=len(space_df), wrap=True )
        right_df = gr.Dataframe( value=pd.DataFrame(columns=["File"]),
            label="Files in Selected Space",  interactive=False, wrap=True )

    left_df.select(fn=load_space_files, outputs=right_df)
'''