""" """ from datetime import datetime from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile P = ParamSpec('P') TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: TRANSFORMER_NUM_FRAMES_DIM, }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): t0 = datetime.now() @spaces.GPU(duration=1500) def compile_transformer(): nonlocal t0 print('compile_transformer', -(t0 - (t0 := datetime.now()))) with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) print('capture_component_call', -(t0 - (t0 := datetime.now()))) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) print('quantize_', -(t0 - (t0 := datetime.now()))) hidden_states: torch.Tensor = call.kwargs['hidden_states'] hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous() if hidden_states.shape[-1] > hidden_states.shape[-2]: hidden_states_landscape = hidden_states hidden_states_portrait = hidden_states_transposed else: hidden_states_landscape = hidden_states_transposed hidden_states_portrait = hidden_states exported_landscape = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs | {'hidden_states': hidden_states_landscape}, dynamic_shapes=dynamic_shapes, ) print('exported_landscape', -(t0 - (t0 := datetime.now()))) exported_portrait = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs | {'hidden_states': hidden_states_portrait}, dynamic_shapes=dynamic_shapes, ) print('exported_portrait', -(t0 - (t0 := datetime.now()))) compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS) print('compiled_landscape', -(t0 - (t0 := datetime.now()))) compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS) # TODO: weights_from=compiled_landscape compiled_portrait.weights.clear() print('compiled_portrait', -(t0 - (t0 := datetime.now()))) return compiled_landscape, compiled_portrait compiled_landscape, compiled_portrait = compile_transformer() print('compiled', -(t0 - (t0 := datetime.now()))) compiled_portrait.weights = compiled_landscape.weights def combined_transformer(*args, **kwargs): hidden_states: torch.Tensor = kwargs['hidden_states'] if hidden_states.shape[-1] > hidden_states.shape[-2]: return compiled_landscape(*args, **kwargs) else: return compiled_portrait(*args, **kwargs) transformer_config = pipeline.transformer.config transformer_dtype = pipeline.transformer.dtype pipeline.transformer = combined_transformer pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue] pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]