File size: 5,617 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2
import numpy as np
import os


import numpy as np
import torch
import torch.nn.functional as F
import os
import cv2

# borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
def face_vertices(vertices, faces):
    """ 
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of faces, 3, 3]
    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (vertices.shape[2] == 3)
    assert (faces.shape[2] == 3)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, 3))
    # pytorch only supports long and byte tensors for indexing
    return vertices[faces.long()]
    
def vertex_normals(vertices, faces):
    """
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of vertices, 3]
    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (vertices.shape[2] == 3)
    assert (faces.shape[2] == 3)
    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    normals = torch.zeros(bs * nv, 3).to(device)

    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
    vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]

    faces = faces.reshape(-1, 3)
    vertices_faces = vertices_faces.reshape(-1, 3, 3)

    normals.index_add_(0, faces[:, 1].long(), 
                       torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1]))
    normals.index_add_(0, faces[:, 2].long(), 
                       torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2]))
    normals.index_add_(0, faces[:, 0].long(),
                       torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0]))

    normals = F.normalize(normals, eps=1e-6, dim=1)
    normals = normals.reshape((bs, nv, 3))
    # pytorch only supports long and byte tensors for indexing
    return normals

def batch_orth_proj(X, camera):
    ''' orthgraphic projection
        X:  3d vertices, [bz, n_point, 3]
        camera: scale and translation, [bz, 3], [scale, tx, ty]
    '''
    #print('--------')
    #print(camera[0, 1:].abs())
    #print(X[0].abs().mean(0))

    camera = camera.clone().view(-1, 1, 3)
    X_trans = X[:, :, :2] + camera[:, :, 1:]
    #print(X_trans[0].abs().mean(0))
    X_trans = torch.cat([X_trans, X[:,:,2:]], 2)
    Xn = (camera[:, :, 0:1] * X_trans)
    return Xn

class MP_2_FLAME():
    """
    Convert Mediapipe 52 blendshape scores to FLAME's coefficients 
    """
    def __init__(self, mappings_path):
        self.bs2exp = np.load(os.path.join(mappings_path, 'bs2exp.npy'))
        self.bs2pose = np.load(os.path.join(mappings_path, 'bs2pose.npy'))
        self.bs2eye = np.load(os.path.join(mappings_path, 'bs2eye.npy'))

    def convert(self, blendshape_scores : np.array):
        # blendshape_scores: [N, 52]

        # Calculate expression, pose, and eye_pose using the mappings
        exp = blendshape_scores @ self.bs2exp 
        pose = blendshape_scores @ self.bs2pose 
        pose[0, :3] = 0  # we do not support head rotation yet
        eye_pose = blendshape_scores @ self.bs2eye

        return exp, pose, eye_pose

class MediaPipeUtils:
    def __init__(self, model_asset_path='pretrained_models/mediapipe/face_landmarker.task', mappings_path='pretrained_models/mediapipe/'):
        base_options = python.BaseOptions(model_asset_path=model_asset_path)
        options = vision.FaceLandmarkerOptions(base_options=base_options,
                                               output_face_blendshapes=True,
                                               output_facial_transformation_matrixes=True,
                                               num_faces=1,
                                               min_face_detection_confidence=0.1,
                                               min_face_presence_confidence=0.1)
        self.detector = vision.FaceLandmarker.create_from_options(options)
        self.mp2flame = MP_2_FLAME(mappings_path=mappings_path)

    def run_mediapipe(self, image):
        image_numpy = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image_numpy)
        detection_result = self.detector.detect(image)

        if len(detection_result.face_landmarks) == 0:
            print('No face detected')
            return None

        blend_scores = detection_result.face_blendshapes[0]
        blend_scores = np.array(list(map(lambda l: l.score, blend_scores)), dtype=np.float32).reshape(1, 52)
        exp, pose, eye_pose = self.mp2flame.convert(blendshape_scores=blend_scores)

        face_landmarks = detection_result.face_landmarks[0]
        face_landmarks_numpy = np.zeros((478, 3))

        for i, landmark in enumerate(face_landmarks):
            face_landmarks_numpy[i] = [landmark.x * image.width, landmark.y * image.height, landmark.z]

        return face_landmarks_numpy, exp, pose, eye_pose