import os import io from fastapi import FastAPI, UploadFile, File, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, HTMLResponse from huggingface_hub import InferenceClient from PyPDF2 import PdfReader from docx import Document from PIL import Image from io import BytesIO # Load Hugging Face Token securely HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN") app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Initialize Hugging Face clients summary_client = InferenceClient(model="facebook/bart-large-cnn", token=HUGGINGFACE_TOKEN) qa_client = InferenceClient(model="deepset/roberta-base-squad2", token=HUGGINGFACE_TOKEN) image_caption_client = InferenceClient(model="nlpconnect/vit-gpt2-image-captioning", token=HUGGINGFACE_TOKEN) def extract_text_from_pdf(content: bytes) -> str: reader = PdfReader(io.BytesIO(content)) return "\n".join(page.extract_text() or "" for page in reader.pages).strip() def extract_text_from_docx(content: bytes) -> str: doc = Document(io.BytesIO(content)) return "\n".join(para.text for para in doc.paragraphs).strip() def process_uploaded_file(file: UploadFile) -> str: content = file.file.read() extension = file.filename.split('.')[-1].lower() if extension == "pdf": return extract_text_from_pdf(content) elif extension == "docx": return extract_text_from_docx(content) elif extension == "txt": return content.decode("utf-8").strip() else: raise ValueError("Unsupported file type.") @app.get("/", response_class=HTMLResponse) async def serve_homepage(): with open("index.html", "r", encoding="utf-8") as f: return HTMLResponse(content=f.read(), status_code=200) @app.post("/api/summarize") async def summarize_document(file: UploadFile = File(...)): try: text = process_uploaded_file(file) if len(text) < 20: return {"result": "Document too short to summarize."} summary = summary_client.summarization(text[:3000]) return {"result": summary} except Exception as e: return JSONResponse(status_code=500, content={"error": str(e)}) @app.post("/api/caption") async def caption_image(file: UploadFile = File(...)): try: image_bytes = await file.read() image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB") image_pil.thumbnail((1024, 1024)) img_byte_arr = BytesIO() image_pil.save(img_byte_arr, format='JPEG') img_byte_arr = img_byte_arr.getvalue() result = image_caption_client.image_to_text(img_byte_arr) if isinstance(result, dict): caption = result.get("generated_text") or result.get("caption") or "No caption found." elif isinstance(result, list) and result: caption = result[0].get("generated_text", "No caption found.") elif isinstance(result, str): caption = result else: caption = "No caption found." return {"result": caption} except Exception as e: return JSONResponse(status_code=500, content={"error": str(e)}) @app.post("/api/qa") async def question_answering(file: UploadFile = File(...), question: str = Form(...)): try: content_type = file.content_type if content_type.startswith("image/"): image_bytes = await file.read() image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB") image_pil.thumbnail((1024, 1024)) img_byte_arr = BytesIO() image_pil.save(img_byte_arr, format='JPEG') img_byte_arr = img_byte_arr.getvalue() result = image_caption_client.image_to_text(img_byte_arr) context = result.get("generated_text") if isinstance(result, dict) else result else: text = process_uploaded_file(file) if len(text) < 20: return {"result": "Document too short to answer questions."} context = text[:3000] if not context: return {"result": "No context available to answer."} answer = qa_client.question_answering(question=question, context=context) return {"result": answer.get("answer", "No answer found.")} except Exception as e: return JSONResponse(status_code=500, content={"error": str(e)}) if __name__ == "__main__": import uvicorn uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)