Upload 2 files
Browse files- index.html +171 -0
- main.py +213 -0
index.html
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8" />
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
6 |
+
<title>AI-Powered Web App</title>
|
7 |
+
<style>
|
8 |
+
:root {
|
9 |
+
--primary-color: #4A90E2;
|
10 |
+
--secondary-color: #f4f6f8;
|
11 |
+
--text-color: #333;
|
12 |
+
--btn-color: #4A90E2;
|
13 |
+
--btn-hover: #357ABD;
|
14 |
+
--card-bg: #fff;
|
15 |
+
--card-shadow: rgba(0, 0, 0, 0.1);
|
16 |
+
--border-radius: 8px;
|
17 |
+
--transition: 0.3s;
|
18 |
+
--max-width: 900px;
|
19 |
+
}
|
20 |
+
* {
|
21 |
+
box-sizing: border-box;
|
22 |
+
}
|
23 |
+
body {
|
24 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
25 |
+
color: var(--text-color);
|
26 |
+
background: var(--secondary-color);
|
27 |
+
margin: 0;
|
28 |
+
padding: 20px;
|
29 |
+
display: flex;
|
30 |
+
justify-content: center;
|
31 |
+
}
|
32 |
+
.container {
|
33 |
+
width: 100%;
|
34 |
+
max-width: var(--max-width);
|
35 |
+
}
|
36 |
+
h1 {
|
37 |
+
text-align: center;
|
38 |
+
color: var(--primary-color);
|
39 |
+
margin-bottom: 40px;
|
40 |
+
}
|
41 |
+
.section {
|
42 |
+
background: var(--card-bg);
|
43 |
+
padding: 20px;
|
44 |
+
margin-bottom: 30px;
|
45 |
+
border-radius: var(--border-radius);
|
46 |
+
box-shadow: 0 2px 8px var(--card-shadow);
|
47 |
+
transition: transform var(--transition);
|
48 |
+
}
|
49 |
+
.section:hover {
|
50 |
+
transform: translateY(-3px);
|
51 |
+
}
|
52 |
+
h2 {
|
53 |
+
margin-top: 0;
|
54 |
+
color: var(--primary-color);
|
55 |
+
border-bottom: 2px solid var(--secondary-color);
|
56 |
+
padding-bottom: 5px;
|
57 |
+
}
|
58 |
+
label {
|
59 |
+
display: block;
|
60 |
+
margin-top: 15px;
|
61 |
+
font-weight: bold;
|
62 |
+
}
|
63 |
+
input[type="file"], input[type="text"], button, textarea {
|
64 |
+
width: 100%;
|
65 |
+
padding: 10px;
|
66 |
+
margin-top: 8px;
|
67 |
+
border: 1px solid #ccc;
|
68 |
+
border-radius: var(--border-radius);
|
69 |
+
font-size: 1rem;
|
70 |
+
}
|
71 |
+
button {
|
72 |
+
background: var(--btn-color);
|
73 |
+
color: #fff;
|
74 |
+
border: none;
|
75 |
+
margin-top: 20px;
|
76 |
+
padding: 12px;
|
77 |
+
font-size: 1rem;
|
78 |
+
border-radius: var(--border-radius);
|
79 |
+
cursor: pointer;
|
80 |
+
transition: background var(--transition);
|
81 |
+
}
|
82 |
+
button:hover {
|
83 |
+
background: var(--btn-hover);
|
84 |
+
}
|
85 |
+
.results {
|
86 |
+
margin-top: 20px;
|
87 |
+
padding: 15px;
|
88 |
+
background: var(--secondary-color);
|
89 |
+
border-radius: var(--border-radius);
|
90 |
+
border: 1px solid #ddd;
|
91 |
+
min-height: 60px;
|
92 |
+
}
|
93 |
+
@media (min-width: 768px) {
|
94 |
+
.grid {
|
95 |
+
display: flex;
|
96 |
+
gap: 20px;
|
97 |
+
}
|
98 |
+
.grid > div {
|
99 |
+
flex: 1;
|
100 |
+
}
|
101 |
+
}
|
102 |
+
</style>
|
103 |
+
</head>
|
104 |
+
<body>
|
105 |
+
<div class="container">
|
106 |
+
<h1>AI-Powered Web Application</h1>
|
107 |
+
|
108 |
+
<!-- Function 1 & 2 in grid on larger screens -->
|
109 |
+
<div class="grid">
|
110 |
+
<!-- Function 1: Document & Image Analysis -->
|
111 |
+
<div class="section" id="analysis-section">
|
112 |
+
<h2>1. Document & Image Analysis</h2>
|
113 |
+
<!-- Text Summarization -->
|
114 |
+
<label for="doc-input-summarize">Upload Document (PDF, DOCX, PPTX, XLSX):</label>
|
115 |
+
<input type="file" id="doc-input-summarize" accept=".pdf,.docx,.pptx,.xlsx" />
|
116 |
+
<button id="summarize-btn">Summarize Document</button>
|
117 |
+
<div class="results" id="summary-result">Your summary will appear here.</div>
|
118 |
+
|
119 |
+
<!-- Image Captioning -->
|
120 |
+
<label for="img-input-caption">Upload Image (JPG, PNG):</label>
|
121 |
+
<input type="file" id="img-input-caption" accept="image/*" />
|
122 |
+
<button id="caption-btn">Generate Caption</button>
|
123 |
+
<div class="results" id="caption-result">Image caption will appear here.</div>
|
124 |
+
</div>
|
125 |
+
|
126 |
+
<!-- Function 2: Intelligent Question Answering -->
|
127 |
+
<div class="section" id="qa-section">
|
128 |
+
<h2>2. Intelligent Question Answering</h2>
|
129 |
+
<label for="file-input-qa">Upload Document or Image:</label>
|
130 |
+
<input type="file" id="file-input-qa" accept=".pdf,.docx,.pptx,.xlsx,image/*" />
|
131 |
+
<label for="question-input">Enter Your Question:</label>
|
132 |
+
<input type="text" id="question-input" placeholder="Type your question here..." />
|
133 |
+
<button id="qa-btn">Ask Question</button>
|
134 |
+
<div class="results" id="qa-result">Answer will appear here.</div>
|
135 |
+
</div>
|
136 |
+
</div>
|
137 |
+
|
138 |
+
<script>
|
139 |
+
async function sendData(url, fileInput, extraData, resultContainer) {
|
140 |
+
const file = fileInput.files[0];
|
141 |
+
if (!file) {
|
142 |
+
resultContainer.textContent = 'Please select a file.';
|
143 |
+
return;
|
144 |
+
}
|
145 |
+
const formData = new FormData();
|
146 |
+
formData.append('file', file);
|
147 |
+
if (extraData) Object.keys(extraData).forEach(key => formData.append(key, extraData[key]));
|
148 |
+
resultContainer.textContent = 'Processing...';
|
149 |
+
try {
|
150 |
+
const res = await fetch(url, { method: 'POST', body: formData });
|
151 |
+
const data = await res.json();
|
152 |
+
resultContainer.textContent = data.result || JSON.stringify(data);
|
153 |
+
} catch (err) {
|
154 |
+
resultContainer.textContent = 'Error: ' + err.message;
|
155 |
+
}
|
156 |
+
}
|
157 |
+
document.getElementById('summarize-btn').addEventListener('click', () => {
|
158 |
+
sendData('/api/summarize', document.getElementById('doc-input-summarize'), null, document.getElementById('summary-result'));
|
159 |
+
});
|
160 |
+
document.getElementById('caption-btn').addEventListener('click', () => {
|
161 |
+
sendData('/api/caption', document.getElementById('img-input-caption'), null, document.getElementById('caption-result'));
|
162 |
+
});
|
163 |
+
document.getElementById('qa-btn').addEventListener('click', () => {
|
164 |
+
const q = document.getElementById('question-input').value.trim();
|
165 |
+
if (!q) { document.getElementById('qa-result').textContent = 'Please enter a question.'; return; }
|
166 |
+
sendData('/api/qa', document.getElementById('file-input-qa'), { question: q }, document.getElementById('qa-result'));
|
167 |
+
});
|
168 |
+
</script>
|
169 |
+
</div>
|
170 |
+
</body>
|
171 |
+
</html>
|
main.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from typing import Optional
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
from transformers import pipeline
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
import pytesseract
|
12 |
+
from langchain.chains import LLMChain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain_community.llms import HuggingFaceHub
|
15 |
+
|
16 |
+
# Initialize FastAPI app
|
17 |
+
app = FastAPI(
|
18 |
+
title="AI-Powered Web Application API",
|
19 |
+
description="API for document analysis, image captioning, and question answering",
|
20 |
+
version="1.0.0"
|
21 |
+
)
|
22 |
+
|
23 |
+
# CORS configuration
|
24 |
+
app.add_middleware(
|
25 |
+
CORSMiddleware,
|
26 |
+
allow_origins=["*"],
|
27 |
+
allow_credentials=True,
|
28 |
+
allow_methods=["*"],
|
29 |
+
allow_headers=["*"],
|
30 |
+
)
|
31 |
+
|
32 |
+
# Initialize AI models (lazy loading)
|
33 |
+
summarizer = None
|
34 |
+
image_captioner = None
|
35 |
+
qa_chain = None
|
36 |
+
|
37 |
+
class SummaryRequest(BaseModel):
|
38 |
+
file: UploadFile = File(...)
|
39 |
+
|
40 |
+
class CaptionRequest(BaseModel):
|
41 |
+
file: UploadFile = File(...)
|
42 |
+
|
43 |
+
class QARequest(BaseModel):
|
44 |
+
file: UploadFile = File(...)
|
45 |
+
question: str = Form(...)
|
46 |
+
|
47 |
+
def initialize_models():
|
48 |
+
"""Initialize AI models with optimized prompts"""
|
49 |
+
global summarizer, image_captioner, qa_chain
|
50 |
+
|
51 |
+
# Document summarization model
|
52 |
+
if summarizer is None:
|
53 |
+
summarizer = pipeline(
|
54 |
+
"summarization",
|
55 |
+
model="facebook/bart-large-cnn",
|
56 |
+
device=0 if torch.cuda.is_available() else -1
|
57 |
+
)
|
58 |
+
|
59 |
+
# Image captioning model
|
60 |
+
if image_captioner is None:
|
61 |
+
image_captioner = pipeline(
|
62 |
+
"image-to-text",
|
63 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
64 |
+
device=0 if torch.cuda.is_available() else -1
|
65 |
+
)
|
66 |
+
|
67 |
+
# Question answering chain
|
68 |
+
if qa_chain is None:
|
69 |
+
llm = HuggingFaceHub(
|
70 |
+
repo_id="google/flan-t5-large",
|
71 |
+
model_kwargs={"temperature": 0.1, "max_length": 512}
|
72 |
+
)
|
73 |
+
|
74 |
+
qa_prompt = PromptTemplate(
|
75 |
+
input_variables=["document", "question"],
|
76 |
+
template="""
|
77 |
+
Using the provided document, answer the following question precisely.
|
78 |
+
If the answer cannot be determined from the document, respond with
|
79 |
+
'The answer cannot be determined from the provided document.'
|
80 |
+
|
81 |
+
Question: {question}
|
82 |
+
|
83 |
+
Rules:
|
84 |
+
1. Provide a concise answer (1-3 sentences maximum)
|
85 |
+
2. When possible, reference the specific section of the document that supports your answer
|
86 |
+
3. Maintain numerical precision when answering quantitative questions
|
87 |
+
4. For comparison questions, highlight both items being compared
|
88 |
+
|
89 |
+
Document: {document}
|
90 |
+
"""
|
91 |
+
)
|
92 |
+
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
93 |
+
|
94 |
+
def extract_text_from_file(file: UploadFile) -> str:
|
95 |
+
"""Extract text from various file formats"""
|
96 |
+
# Create a temporary file
|
97 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
98 |
+
temp_file.write(file.file.read())
|
99 |
+
temp_path = temp_file.name
|
100 |
+
|
101 |
+
try:
|
102 |
+
# PDF, DOCX, PPTX, XLSX would need appropriate libraries here
|
103 |
+
# For simplicity, we'll just read text files in this example
|
104 |
+
if file.filename.endswith('.txt'):
|
105 |
+
with open(temp_path, 'r', encoding='utf-8') as f:
|
106 |
+
return f.read()
|
107 |
+
else:
|
108 |
+
# In a real implementation, use libraries like PyPDF2, python-docx, etc.
|
109 |
+
raise HTTPException(
|
110 |
+
status_code=415,
|
111 |
+
detail="File type not supported in this example implementation"
|
112 |
+
)
|
113 |
+
finally:
|
114 |
+
os.unlink(temp_path)
|
115 |
+
|
116 |
+
@app.post("/api/summarize")
|
117 |
+
async def summarize_document(file: UploadFile = File(...)):
|
118 |
+
"""Summarize a document"""
|
119 |
+
initialize_models()
|
120 |
+
|
121 |
+
try:
|
122 |
+
# Extract text from the document
|
123 |
+
document_text = extract_text_from_file(file)
|
124 |
+
|
125 |
+
# Generate summary with optimized prompt
|
126 |
+
summary = summarizer(
|
127 |
+
document_text,
|
128 |
+
max_length=150,
|
129 |
+
min_length=30,
|
130 |
+
do_sample=False,
|
131 |
+
truncation=True
|
132 |
+
)
|
133 |
+
|
134 |
+
return JSONResponse(
|
135 |
+
content={"status": "success", "result": summary[0]['summary_text']},
|
136 |
+
status_code=200
|
137 |
+
)
|
138 |
+
except Exception as e:
|
139 |
+
raise HTTPException(
|
140 |
+
status_code=500,
|
141 |
+
detail=f"Error processing document: {str(e)}"
|
142 |
+
)
|
143 |
+
|
144 |
+
@app.post("/api/caption")
|
145 |
+
async def generate_image_caption(file: UploadFile = File(...)):
|
146 |
+
"""Generate caption for an image"""
|
147 |
+
initialize_models()
|
148 |
+
|
149 |
+
try:
|
150 |
+
# Save the uploaded image temporarily
|
151 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
152 |
+
temp_file.write(file.file.read())
|
153 |
+
temp_path = temp_file.name
|
154 |
+
|
155 |
+
# Open the image
|
156 |
+
image = Image.open(temp_path)
|
157 |
+
|
158 |
+
# Generate caption with optimized prompt
|
159 |
+
caption = image_captioner(
|
160 |
+
image,
|
161 |
+
generate_kwargs={
|
162 |
+
"max_length": 50,
|
163 |
+
"num_beams": 4,
|
164 |
+
"early_stopping": True
|
165 |
+
}
|
166 |
+
)
|
167 |
+
|
168 |
+
return JSONResponse(
|
169 |
+
content={"status": "success", "result": caption[0]['generated_text']},
|
170 |
+
status_code=200
|
171 |
+
)
|
172 |
+
except Exception as e:
|
173 |
+
raise HTTPException(
|
174 |
+
status_code=500,
|
175 |
+
detail=f"Error processing image: {str(e)}"
|
176 |
+
)
|
177 |
+
finally:
|
178 |
+
if 'temp_path' in locals() and os.path.exists(temp_path):
|
179 |
+
os.unlink(temp_path)
|
180 |
+
|
181 |
+
@app.post("/api/qa")
|
182 |
+
async def answer_question(
|
183 |
+
file: UploadFile = File(...),
|
184 |
+
question: str = Form(...)
|
185 |
+
):
|
186 |
+
"""Answer questions based on document content"""
|
187 |
+
initialize_models()
|
188 |
+
|
189 |
+
try:
|
190 |
+
# Extract text from the document
|
191 |
+
document_text = extract_text_from_file(file)
|
192 |
+
|
193 |
+
# Get answer using the QA chain
|
194 |
+
answer = qa_chain.run(document=document_text, question=question)
|
195 |
+
|
196 |
+
return JSONResponse(
|
197 |
+
content={"status": "success", "result": answer},
|
198 |
+
status_code=200
|
199 |
+
)
|
200 |
+
except Exception as e:
|
201 |
+
raise HTTPException(
|
202 |
+
status_code=500,
|
203 |
+
detail=f"Error processing question: {str(e)}"
|
204 |
+
)
|
205 |
+
|
206 |
+
@app.get("/")
|
207 |
+
async def health_check():
|
208 |
+
"""Health check endpoint"""
|
209 |
+
return {"status": "healthy", "version": "1.0.0"}
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
import uvicorn
|
213 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|