--- title: TorchTransformers Diffusion CV SFT emoji: ⚡ colorFrom: yellow colorTo: indigo sdk: streamlit sdk_version: 1.43.2 app_file: app.py pinned: false license: mit short_description: Torch Transformers Diffusion SFT for Computer Vision --- # SFT Tiny Titans 🚀 Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed # ${title} ${short_description} ## Abstract TorchTransformers Diffusion SFT Titans harnesses `torch`, `transformers`, and `diffusers` for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual `st.camera_input` captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with `smolagents` compatibility. Key papers illuminate the stack: - **[Streamlit: A Declarative Framework for Data Apps](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: Streamlit’s UI framework. - **[PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch foundation. - **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: Transformers for NLP. - **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Diffusion models in CV. - **[Pandas: A Foundation for Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling with Pandas. - **[Pillow: The Python Imaging Library](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational). - **[pytz: Time Zone Calculations in Python](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time handling (no direct arXiv, but contextual). - **[OpenCV: Open Source Computer Vision Library](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV processing (no direct arXiv, but seminal). - **[Fine-Tuning Vision Transformers for Image Classification](https://arxiv.org/abs/2106.10504)** - Dosovitskiy et al., 2021: SFT for CV. - **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: Efficient SFT techniques. - **[Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG foundations. - **[Transfusion: Multi-Modal Model with Token Prediction and Diffusion](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Combined NLP/CV SFT. Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji}