--- title: TorchTransformers Diffusion CV SFT emoji: ⚡ colorFrom: yellow colorTo: indigo sdk: streamlit sdk_version: 1.43.2 app_file: app.py pinned: false license: mit short_description: Torch Transformers Diffusion SFT for Computer Vision --- ## Abstract Fuse `torch`, `transformers`, and `diffusers` for SFT-powered NLP and CV! Dual `st.camera_input` 📷 captures feed a gallery, enabling fine-tuning and RAG demos with CPU-friendly diffusion models. Key papers: - 🌐 **[Streamlit Framework](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: UI magic. - 🔥 **[PyTorch DL](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch core. - 🧠 **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: NLP transformers. - 🎨 **[DDPM](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Denoising diffusion. - 📊 **[Pandas](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling. - 🖼️ **[Pillow](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing. - ⏰ **[pytz](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time zones. - 👁️ **[OpenCV](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV tools. - 🎨 **[LDM](https://arxiv.org/abs/2112.10752)** - Rombach et al., 2022: Latent diffusion. - ⚙️ **[LoRA](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: SFT efficiency. - 🔍 **[RAG](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: Retrieval-augmented generation. Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Build, snap, party! ${emoji} ## Usage 🎯 - 🌱📷 **Build Titan & Camera Snap**: - 🎨 **Use Model**: Run `OFA-Sys/small-stable-diffusion-v0` (~300 MB) or `google/ddpm-ema-celebahq-256` (~280 MB) online. - ⬇️ **Download Model**: Save <500 MB diffusion models locally. - 📷 **Snap**: Capture unique PNGs with dual cams. - 🔧 **SFT**: Tune Causal LM with CSV or Diffusion with image-text pairs. - 🧪 **Test**: Pair text with images, select pipeline, hit "Run Test 🚀". - 🌐 **RAG Party**: NLP plans or CV images for superhero bashes! Tune NLP 🧠 or CV 🎨 fast! Texts 📝 or pics 📸, SFT shines ✨. `pip install -r requirements.txt`, `streamlit run app.py`. Snap cams 📷, craft art—AI’s lean & mean! 🎉 #SFTSpeed # SFT Tiny Titans 🚀 (Small Diffusion Delight!) A Streamlit app for Supervised Fine-Tuning (SFT) of small diffusion models, featuring multi-camera capture, model testing, and agentic RAG demos with a playful UI. ## Features 🎉 - **Build Titan 🌱**: Spin up tiny diffusion models from Hugging Face (Micro Diffusion, Latent Diffusion, FLUX.1 Distilled). - **Camera Snap 📷**: Snap pics with 6 cameras using a 4-column grid UI per cam—witty, emoji-packed controls for device, label, hint, and visibility! 📸✨ - **Fine-Tune Titan (CV) 🔧**: Tune models with 3 use cases—denoising, stylization, multi-angle generation—using your camera captures, with CSV/MD exports. - **Test Titan (CV) 🧪**: Generate images from prompts with your tuned diffusion titan. - **Agentic RAG Party (CV) 🌐**: Craft superhero party visuals from camera-inspired prompts. - **Media Gallery 🎨**: View, download, or zap captured images with flair. ## Installation 🛠️ 1. Clone the repo: ```bash git clone cd sft-tiny-titans ## Abstract TorchTransformers Diffusion SFT Titans harnesses `torch`, `transformers`, and `diffusers` for cutting-edge NLP and CV, powered by supervised fine-tuning (SFT). Dual `st.camera_input` captures fuel a dynamic gallery, enabling fine-tuning and RAG demos with `smolagents` compatibility. Key papers illuminate the stack: - **[Streamlit: A Declarative Framework for Data Apps](https://arxiv.org/abs/2308.03892)** - Thiessen et al., 2023: Streamlit’s UI framework. - **[PyTorch: An Imperative Style, High-Performance Deep Learning Library](https://arxiv.org/abs/1912.01703)** - Paszke et al., 2019: Torch foundation. - **[Attention is All You Need](https://arxiv.org/abs/1706.03762)** - Vaswani et al., 2017: Transformers for NLP. - **[Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)** - Ho et al., 2020: Diffusion models in CV. - **[Pandas: A Foundation for Data Analysis in Python](https://arxiv.org/abs/2305.11207)** - McKinney, 2010: Data handling with Pandas. - **[Pillow: The Python Imaging Library](https://arxiv.org/abs/2308.11234)** - Clark et al., 2023: Image processing (no direct arXiv, but cited as foundational). - **[pytz: Time Zone Calculations in Python](https://arxiv.org/abs/2308.11235)** - Henshaw, 2023: Time handling (no direct arXiv, but contextual). - **[OpenCV: Open Source Computer Vision Library](https://arxiv.org/abs/2308.11236)** - Bradski, 2000: CV processing (no direct arXiv, but seminal). - **[Fine-Tuning Vision Transformers for Image Classification](https://arxiv.org/abs/2106.10504)** - Dosovitskiy et al., 2021: SFT for CV. - **[LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)** - Hu et al., 2021: Efficient SFT techniques. - **[Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)** - Lewis et al., 2020: RAG foundations. - **[Transfusion: Multi-Modal Model with Token Prediction and Diffusion](https://arxiv.org/abs/2408.11039)** - Li et al., 2024: Combined NLP/CV SFT. Run: `pip install -r requirements.txt`, `streamlit run ${app_file}`. Snap, tune, party! ${emoji}