anomaly-detection / ingest.py
avilum's picture
Create ingest.py
d30ec9f verified
raw
history blame
5.53 kB
import os
from tqdm import tqdm
import pathlib
from langchain_community.document_loaders import TextLoader
from langchain.docstore.document import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
os.environ["RAY_memory_monitor_refresh_ms"] = "0"
os.environ["RAY_DEDUP_LOGS"] = "0"
import ray
from common import DATASET_DIR, EMBEDDING_MODEL_NAME, MODEL_KWARGS, VECTORSTORE_FILENAME
# Each document is parsed on the same CPU, to decrease paging and data copies, and up to the the number of vCPUs.
CONCURRENCY = 32
# @ray.remote(num_cpus=1) # Outside a container, num_cpus=1 might speed things dramatically.
@ray.remote
def parse_doc(document_path: str) -> Document:
print("Loading", document_path)
loader = TextLoader(document_path)
langchain_dataset_documents = loader.load()
# Update the metadata with the proper metadata JSON file, parsed from Arxiv.com
return langchain_dataset_documents
def add_documents_to_vector_store(
vector_store, new_documents, text_splitter, embeddings
):
split_docs = text_splitter.split_documents(new_documents)
# print("Embedding vectors...")
store = FAISS.from_documents(split_docs, embeddings)
if vector_store is None:
vector_store = store
else:
print("Updating vector store", store)
vector_store.merge_from(store)
return vector_store
def ingest_dataset_to_vectore_store(
vectorstore_filename: str, dataset_directory: os.PathLike
):
ray.init()
vector_store = None
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=160, # TODO: Finetune
chunk_overlap=40, # TODO: Finetune
length_function=len,
)
dataset_documents = []
dataset_dir_path = pathlib.Path(dataset_directory)
dataset_dir_path.mkdir(exist_ok=True)
for _dirname in os.listdir(str(dataset_dir_path)):
if _dirname.startswith("."):
continue
catagory_path = dataset_dir_path / pathlib.Path(_dirname)
for filename in os.listdir(str(dataset_dir_path / catagory_path)):
dataset_path = dataset_dir_path / catagory_path / pathlib.Path(filename)
dataset_documents.append(str(dataset_path))
print(dataset_documents)
print(f"Found {len(dataset_documents)} items in dataset: ")
langchain_documents = []
model_name = EMBEDDING_MODEL_NAME
model_kwargs = MODEL_KWARGS
print("Creating huggingface embeddings for ", model_name)
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
if vector_store is None and os.path.exists(vectorstore_filename):
print("Loading existing vector store from", vectorstore_filename)
vector_store = FAISS.load_local(
vectorstore_filename, embeddings, allow_dangerous_deserialization=True
)
jobs = []
docs_count = len(dataset_documents)
failed = 0
print(f"Embedding {docs_count} documents with Ray...")
for i, document in enumerate(tqdm(dataset_documents)):
try:
# print(f"Submitting job ", i)
job = parse_doc.remote(document)
jobs.append(job)
if i > 1 and i <= docs_count and i % CONCURRENCY == 0:
if langchain_documents:
vector_store = add_documents_to_vector_store(
vector_store, langchain_documents, text_splitter, embeddings
)
print(f"\nSaving vector store to disk at {vectorstore_filename}...")
try:
os.unlink(vectorstore_filename)
except:
...
vector_store.save_local(vectorstore_filename)
langchain_documents = []
jobs = []
# Block jobs every CONCURRENCY iterations
if i > 1 and i % CONCURRENCY == 0:
# print(f"Collecting {len(jobs)} jobs...")
for _ in jobs:
try:
# print("waiting for ray job ", _)
data = ray.get(_)
langchain_documents.extend(data)
except Exception as e:
print("error in job: ", e)
continue
except Exception as e:
print(f"\n\nERROR reading dataset {i}:", e)
failed = failed + 1
continue
# print(f"Collecting {len(jobs)} jobs...")
for _ in jobs:
try:
print("waiting for ray job ", _)
data = ray.get(_)
langchain_documents.extend(data)
except Exception as e:
print("error in job: ", e)
continue
if langchain_documents:
vector_store = add_documents_to_vector_store(
vector_store, langchain_documents, text_splitter, embeddings
)
print(f"\nSaving vector store to disk at {vectorstore_filename}...")
try:
os.unlink(vectorstore_filename)
except:
...
vector_store.save_local(vectorstore_filename)
return vector_store
def main():
vectorstore_filename = VECTORSTORE_FILENAME
dataset_directory = DATASET_DIR
ingest_dataset_to_vectore_store(
vectorstore_filename=vectorstore_filename, dataset_directory=dataset_directory
)
if __name__ == "__main__":
main()