Spaces:
Running
Running
import os | |
from tqdm import tqdm | |
import pathlib | |
from langchain_community.document_loaders import TextLoader | |
from langchain.docstore.document import Document | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
os.environ["RAY_memory_monitor_refresh_ms"] = "0" | |
os.environ["RAY_DEDUP_LOGS"] = "0" | |
import ray | |
from common import DATASET_DIR, EMBEDDING_MODEL_NAME, MODEL_KWARGS, VECTORSTORE_FILENAME | |
# Each document is parsed on the same CPU, to decrease paging and data copies, and up to the the number of vCPUs. | |
CONCURRENCY = 32 | |
# @ray.remote(num_cpus=1) # Outside a container, num_cpus=1 might speed things dramatically. | |
def parse_doc(document_path: str) -> Document: | |
print("Loading", document_path) | |
loader = TextLoader(document_path) | |
langchain_dataset_documents = loader.load() | |
# Update the metadata with the proper metadata JSON file, parsed from Arxiv.com | |
return langchain_dataset_documents | |
def add_documents_to_vector_store( | |
vector_store, new_documents, text_splitter, embeddings | |
): | |
split_docs = text_splitter.split_documents(new_documents) | |
# print("Embedding vectors...") | |
store = FAISS.from_documents(split_docs, embeddings) | |
if vector_store is None: | |
vector_store = store | |
else: | |
print("Updating vector store", store) | |
vector_store.merge_from(store) | |
return vector_store | |
def ingest_dataset_to_vectore_store( | |
vectorstore_filename: str, dataset_directory: os.PathLike | |
): | |
ray.init() | |
vector_store = None | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=160, # TODO: Finetune | |
chunk_overlap=40, # TODO: Finetune | |
length_function=len, | |
) | |
dataset_documents = [] | |
dataset_dir_path = pathlib.Path(dataset_directory) | |
dataset_dir_path.mkdir(exist_ok=True) | |
for _dirname in os.listdir(str(dataset_dir_path)): | |
if _dirname.startswith("."): | |
continue | |
catagory_path = dataset_dir_path / pathlib.Path(_dirname) | |
for filename in os.listdir(str(dataset_dir_path / catagory_path)): | |
dataset_path = dataset_dir_path / catagory_path / pathlib.Path(filename) | |
dataset_documents.append(str(dataset_path)) | |
print(dataset_documents) | |
print(f"Found {len(dataset_documents)} items in dataset: ") | |
langchain_documents = [] | |
model_name = EMBEDDING_MODEL_NAME | |
model_kwargs = MODEL_KWARGS | |
print("Creating huggingface embeddings for ", model_name) | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
if vector_store is None and os.path.exists(vectorstore_filename): | |
print("Loading existing vector store from", vectorstore_filename) | |
vector_store = FAISS.load_local( | |
vectorstore_filename, embeddings, allow_dangerous_deserialization=True | |
) | |
jobs = [] | |
docs_count = len(dataset_documents) | |
failed = 0 | |
print(f"Embedding {docs_count} documents with Ray...") | |
for i, document in enumerate(tqdm(dataset_documents)): | |
try: | |
# print(f"Submitting job ", i) | |
job = parse_doc.remote(document) | |
jobs.append(job) | |
if i > 1 and i <= docs_count and i % CONCURRENCY == 0: | |
if langchain_documents: | |
vector_store = add_documents_to_vector_store( | |
vector_store, langchain_documents, text_splitter, embeddings | |
) | |
print(f"\nSaving vector store to disk at {vectorstore_filename}...") | |
try: | |
os.unlink(vectorstore_filename) | |
except: | |
... | |
vector_store.save_local(vectorstore_filename) | |
langchain_documents = [] | |
jobs = [] | |
# Block jobs every CONCURRENCY iterations | |
if i > 1 and i % CONCURRENCY == 0: | |
# print(f"Collecting {len(jobs)} jobs...") | |
for _ in jobs: | |
try: | |
# print("waiting for ray job ", _) | |
data = ray.get(_) | |
langchain_documents.extend(data) | |
except Exception as e: | |
print("error in job: ", e) | |
continue | |
except Exception as e: | |
print(f"\n\nERROR reading dataset {i}:", e) | |
failed = failed + 1 | |
continue | |
# print(f"Collecting {len(jobs)} jobs...") | |
for _ in jobs: | |
try: | |
print("waiting for ray job ", _) | |
data = ray.get(_) | |
langchain_documents.extend(data) | |
except Exception as e: | |
print("error in job: ", e) | |
continue | |
if langchain_documents: | |
vector_store = add_documents_to_vector_store( | |
vector_store, langchain_documents, text_splitter, embeddings | |
) | |
print(f"\nSaving vector store to disk at {vectorstore_filename}...") | |
try: | |
os.unlink(vectorstore_filename) | |
except: | |
... | |
vector_store.save_local(vectorstore_filename) | |
return vector_store | |
def main(): | |
vectorstore_filename = VECTORSTORE_FILENAME | |
dataset_directory = DATASET_DIR | |
ingest_dataset_to_vectore_store( | |
vectorstore_filename=vectorstore_filename, dataset_directory=dataset_directory | |
) | |
if __name__ == "__main__": | |
main() | |