import typing

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel

import audiofile
import audresample


device = 0 if torch.cuda.is_available() else "cpu"
duration = 2  # limit processing of audio
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"


class AgeGenderHead(nn.Module):
    r"""Age-gender model head."""

    def __init__(self, config, num_labels):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class AgeGenderModel(Wav2Vec2PreTrainedModel):
    r"""Age-gender recognition model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.age = AgeGenderHead(config, 1)
        self.gender = AgeGenderHead(config, 3)
        self.init_weights()

    def forward(
            self,
            input_values,
    ):

        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits_age = self.age(hidden_states)
        logits_gender = torch.softmax(self.gender(hidden_states), dim=1)

        return hidden_states, logits_age, logits_gender


class ExpressionHead(nn.Module):
    r"""Expression model head."""

    def __init__(self, config):

        super().__init__()

        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.final_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):

        x = features
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)

        return x


class ExpressionModel(Wav2Vec2PreTrainedModel):
    r"""speech expression model."""

    def __init__(self, config):

        super().__init__(config)

        self.config = config
        self.wav2vec2 = Wav2Vec2Model(config)
        self.classifier = ExpressionHead(config)
        self.init_weights()

    def forward(self, input_values):
        outputs = self.wav2vec2(input_values)
        hidden_states = outputs[0]
        hidden_states = torch.mean(hidden_states, dim=1)
        logits = self.classifier(hidden_states)

        return hidden_states, logits


# Load models from hub
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
expression_model = ExpressionModel.from_pretrained(expression_model_name)


def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
    r"""Predict age and gender or extract embeddings from raw audio signal."""
    # run through processor to normalize signal
    # always returns a batch, so we just get the first entry
    # then we put it on the device
    results = []
    for processor, model in zip(
            [age_gender_processor, expression_processor],
            [age_gender_model, expression_model],
    ):
        y = processor(x, sampling_rate=sampling_rate)
        y = y['input_values'][0]
        y = y.reshape(1, -1)
        y = torch.from_numpy(y).to(device)

        # run through model
        with torch.no_grad():
            y = model(y)
            if len(y) == 3:
                # Age-gender model
                y = torch.hstack([y[1], y[2]])
            else:
                # Expression model
                y = y[1]

        # convert to numpy
        y = y.detach().cpu().numpy()
        results.append(y[0])

    # Plot A/D/V values
    plot_expression(results[1][0], results[1][1], results[1][2])
    expression_file = "expression.png"
    plt.savefig(expression_file)
    return (
        f"{round(100 * results[0][0])} years",  # age
        {
            "female": results[0][1],
            "male": results[0][2],
            "child": results[0][3],
        },
        expression_file,
    )


@spaces.GPU
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
    # sampling_rate, signal = input_microphone
    # signal = signal.astype(np.float32, order="C") / 32768.0
    if input_file is None:
        raise gr.Error(
            "No audio file submitted! "
            "Please upload or record an audio file "
            "before submitting your request."
        )

    signal, sampling_rate = audiofile.read(input_file, duration=duration)
    # Resample to sampling rate supported byu the models
    target_rate = 16000
    signal = audresample.resample(signal, sampling_rate, target_rate)

    return process_func(signal, target_rate)


def plot_expression(arousal, dominance, valence):
    r"""3D pixel plot of arousal, dominance, valence."""
    # Voxels per dimension
    voxels = 7
    # Create voxel grid
    x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
    voxel = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z == round(valence * voxels))
    )
    projection = (
        (x == round(arousal * voxels))
        & (y == round(dominance * voxels))
        & (z < round(valence * voxels))
    )
    colors = np.empty((voxel | projection).shape, dtype=object)
    colors[voxel] = "#fcb06c"
    colors[projection] = "#fed7a9"
    ax = plt.figure().add_subplot(projection='3d')
    ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
    ax.set_xlim([0, voxels])
    ax.set_ylim([0, voxels])
    ax.set_zlim([0, voxels])
    ax.set_aspect("equal")
    ax.set_xlabel("arousal", fontsize="large", labelpad=0)
    ax.set_ylabel("dominance", fontsize="large", labelpad=0)
    ax.set_zlabel("valence", fontsize="large", labelpad=0)
    ax.set_xticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_yticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="bottom",
    )
    ax.set_zticks(
        list(range(voxels + 1)),
        labels=[0, None, None, None, None, None, None, 1],
        verticalalignment="top",
    )



description = (
    "Estimate **age**, **gender**, and **expression** "
    "of the speaker contained in an audio file or microphone recording.  \n"
    f"The model [{age_gender_model_name}]"
    f"(https://huggingface.co/{age_gender_model_name}) "
    "recognises age and gender, "
    f"whereas [{expression_model_name}]"
    f"(https://huggingface.co/{expression_model_name}) "
    "recognises the expression dimensions arousal, dominance, and valence. "
)

with gr.Blocks() as demo:
    with gr.Tab(label="Speech analysis"):
        with gr.Row():
            with gr.Column():
                gr.Markdown(description)
                input = gr.Audio(
                    sources=["upload", "microphone"],
                    type="filepath",
                    label="Audio input",
                    min_length=0.025,  # seconds
                )
                gr.Examples(
                    [
                        "female-46-neutral.wav",
                        "female-20-happy.wav",
                        "male-60-angry.wav",
                        "male-27-sad.wav",
                    ],
                    [input],
                    label="Examples from CREMA-D, ODbL v1.0 license",
                )
                gr.Markdown("Only the first two seconds of the audio will be processed.")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_age = gr.Textbox(label="Age")
                output_gender = gr.Label(label="Gender")
                output_expression = gr.Image(label="Expression")

        outputs = [output_age, output_gender, output_expression]
        submit_btn.click(recognize, input, outputs)


demo.launch(debug=True)