Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
from torch.nn.functional import cosine_similarity
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# ββ 1) Constants & Device ββββββββββββββββββββββββββββββββββββββββββββββββ
|
8 |
+
MODEL_NAME = "microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext"
|
9 |
+
MIN_FREQ = 4
|
10 |
+
MAX_LEN = 256
|
11 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
# ββ 2) Load & Filter Dataset βββββββββββββββββββββββββββββββββββββββββββββ
|
14 |
+
df = pd.read_csv("medquad.csv")
|
15 |
+
df["text"] = df["question"].str.strip() + " " + df["answer"].str.strip()
|
16 |
+
|
17 |
+
vc = df["focus_area"].value_counts()
|
18 |
+
keep = vc[vc >= MIN_FREQ].index
|
19 |
+
df = df[df["focus_area"].isin(keep)].reset_index(drop=True)
|
20 |
+
|
21 |
+
labels = sorted(df["focus_area"].unique())
|
22 |
+
label2id = {lbl:i for i,lbl in enumerate(labels)}
|
23 |
+
id2label = {i:l for l,i in label2id.items()}
|
24 |
+
|
25 |
+
# ββ 3) Load Tokenizer & Frozen BERT βββββββββββββββββββββββββββββββββββββ
|
26 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
+
bert_model = transformers.AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
|
28 |
+
|
29 |
+
@torch.no_grad()
|
30 |
+
def encode_text(s: str, max_length=MAX_LEN):
|
31 |
+
toks = tokenizer(
|
32 |
+
s,
|
33 |
+
return_tensors="pt",
|
34 |
+
truncation=True,
|
35 |
+
max_length=max_length,
|
36 |
+
add_special_tokens=True
|
37 |
+
).to(DEVICE)
|
38 |
+
hidden = bert_model(**toks).last_hidden_state
|
39 |
+
return hidden[:,0].squeeze().cpu() # CLS token
|
40 |
+
|
41 |
+
# ββ 4) Precompute Static Label Embeddings βββββββββββββββββββββββββββββββββ
|
42 |
+
label_embs = torch.stack([
|
43 |
+
encode_text(lbl, max_length=16)
|
44 |
+
for lbl in labels
|
45 |
+
])
|
46 |
+
|
47 |
+
# ββ 5) Classification Function ββββββββββββββββββββββββββββββββββββββββββββ
|
48 |
+
def predict_disease(symptoms: str):
|
49 |
+
"""
|
50 |
+
Encode the user's input, compute cosine similarity
|
51 |
+
to each label embedding, and return the top label.
|
52 |
+
"""
|
53 |
+
q_emb = encode_text(symptoms).unsqueeze(0) # [1, hidden_size]
|
54 |
+
sims = cosine_similarity(q_emb, label_embs) # [1, num_labels]
|
55 |
+
idx = sims.argmax(dim=1).item()
|
56 |
+
return id2label[idx]
|
57 |
+
|
58 |
+
# ββ 6) Gradio Interface βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=predict_disease,
|
61 |
+
inputs=gr.Textbox(
|
62 |
+
lines=3,
|
63 |
+
placeholder="Enter your symptoms here, e.g.\n'I have eye pain and blurred vision...'"
|
64 |
+
),
|
65 |
+
outputs="text",
|
66 |
+
title="π¬ Medical SymptomβDisease Chatbot",
|
67 |
+
description="Type your symptoms; PubMedβBERT + cosine similarity predicts the most likely disease category."
|
68 |
+
)
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
iface.launch()
|