Spaces:
Sleeping
Sleeping
File size: 8,443 Bytes
39e0658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import io
import json
import fitz
import streamlit as st
import torch
from PIL import Image, ImageGrab
from transformers import pipeline
# --- Configuration and Setup ---
DEVICE = 0 if torch.cuda.is_available() else -1
st.set_page_config(
page_title="Invoice AI | by Arif Dogan",
page_icon="🧾",
layout="wide",
initial_sidebar_state="collapsed",
)
# --- Styling ---
st.markdown(
"""
<style>
.stApp {max-width: 1200px; margin: 0 auto}
.stButton>button {background-color: #4CAF50; color: white; border-radius: 5px;}
.stProgress>div>div {background-color: #4CAF50}
footer {visibility: hidden}
.high {color: #4CAF50; font-weight: bold}
.medium {color: #FFA726; font-weight: bold}
.low {color: #EF5350; font-weight: bold}
div[data-testid="stToolbar"] {visibility: hidden; height: 0}
[data-testid="stExpanderContent"] {background-color: rgba(67, 76, 94, 0.5);}
.stTextInput>div>div {background-color: rgba(67, 76, 94, 0.5)}
</style>
""",
unsafe_allow_html=True,
)
# --- Functions ---
@st.cache_resource
def load_model():
return pipeline(
"document-question-answering",
model="faisalraza/layoutlm-invoices",
device=DEVICE,
)
def process_pdf(pdf_file):
pdf_content = pdf_file.read()
pdf_stream = io.BytesIO(pdf_content)
try:
with fitz.open(stream=pdf_stream, filetype="pdf") as pdf_document:
if pdf_document.page_count > 0:
page = pdf_document[0]
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
img_data = pix.tobytes("png")
return Image.open(io.BytesIO(img_data)), pdf_document.page_count
else:
raise ValueError("PDF has no pages")
except Exception as e:
raise e
finally:
pdf_stream.close()
def process_image(uploaded_file):
uploaded_file.seek(0)
if uploaded_file.type == "application/pdf":
return process_pdf(uploaded_file)
return Image.open(uploaded_file), 1
def get_clipboard_image():
try:
img = ImageGrab.grabclipboard()
return (img, 1) if isinstance(img, Image.Image) else (None, 0)
except Exception:
return None, 0
def prepare_export_data(extracted_info, format_type):
if format_type == "JSON":
return json.dumps(
{field: data["value"] for field, data in extracted_info.items()}, indent=2
)
elif format_type == "CSV":
header = ",".join(extracted_info.keys())
values = ",".join(f'"{data["value"]}"' for data in extracted_info.values())
return f"{header}\n{values}"
else: # TXT
return "\n".join(
f"{field}: {data['value']}" for field, data in extracted_info.items()
)
def extract_information(model, image, questions, progress_bar, status_text):
extracted_info = {}
for idx, question in enumerate(questions):
try:
# Update progress bar and status text
progress_bar.progress((idx + 1) / len(questions))
status_text.text(f"Processing: {question} ({idx + 1}/{len(questions)})")
response = model(image=image, question=question)
if (
response and response[0].get("answer", "").strip()
): # Check for non-empty answer
answer = response[0]["answer"]
confidence = response[0]["score"]
if confidence > 0.1:
field = (
question.replace("What is the ", "").replace("?", "").title()
)
extracted_info[field] = {"value": answer, "confidence": confidence}
except Exception:
continue # Handle potential errors during model processing
return extracted_info
# --- Initialization ---
if "processed_image" not in st.session_state:
st.session_state.processed_image = None
if "extracted_info" not in st.session_state:
st.session_state.extracted_info = {}
# --- UI Layout ---
st.markdown(
"""
<div style='text-align: center; padding: 1rem;'>
<h1>🧾 Invoice AI Extractor</h1>
<p style='font-size: 1.2em; color: #999;'>Powered by LayoutLM</p>
</div>
""",
unsafe_allow_html=True,
)
model = load_model()
col1, col2 = st.columns([2, 1])
with col1:
uploaded_file = st.file_uploader(
"Drop invoice (PDF, JPG, PNG)", type=["pdf", "jpg", "jpeg", "png"]
)
with col2:
st.write("Or paste from clipboard (Ctrl/Cmd + V)")
check_clipboard = st.button("📎 Check Clipboard")
# --- Image Processing Logic ---
if uploaded_file:
try:
image, _ = process_image(uploaded_file)
st.session_state.processed_image = image
st.session_state.extracted_info = {} # Reset on new upload
except Exception as e:
st.error(f"Error processing file: {e}")
elif check_clipboard:
clipboard_image, _ = get_clipboard_image()
if clipboard_image:
st.session_state.processed_image = clipboard_image
st.session_state.extracted_info = {}
st.success("Image loaded from clipboard")
else:
st.warning("No image found in clipboard")
# --- Display and Information Extraction ---
if st.session_state.processed_image:
try:
image = st.session_state.processed_image.convert("RGB")
col1, col2 = st.columns([1, 1])
with col1:
st.image(image, caption="Document", use_container_width=True)
with col2:
st.markdown("### 📊 Extracted Information")
if not st.session_state.extracted_info:
questions = [
"What is the invoice number?",
"What is the invoice date?",
"What is the total amount?",
"What is the company name?",
"What is the due date?",
"What is the tax amount?",
]
# Create progress bar and status text elements
progress_bar = st.progress(0)
status_text = st.empty()
st.session_state.extracted_info = extract_information(
model, image, questions, progress_bar, status_text
)
# Clear status text after completion
status_text.empty()
if st.session_state.extracted_info:
for field, data in st.session_state.extracted_info.items():
conf_col, val_col = st.columns([1, 4])
with val_col:
st.text_input(
field, data["value"], disabled=True, key=f"input_{field}"
) # added key
with conf_col:
confidence = data["confidence"]
css_class = (
"high"
if confidence > 0.7
else "medium"
if confidence > 0.4
else "low"
)
st.markdown(
f"<p class='{css_class}'>{confidence:.1%}</p>",
unsafe_allow_html=True,
)
st.markdown("### 📥 Export")
export_format = st.selectbox("Format", ["JSON", "CSV", "TXT"])
export_data = prepare_export_data(
st.session_state.extracted_info, export_format
)
file_extension = export_format.lower()
st.download_button(
"Download",
export_data,
file_name=f"invoice_data.{file_extension}",
mime=f"text/{file_extension}",
)
else:
st.warning(
"Could not extract information. Please ensure the document is clear."
)
except Exception as e:
st.error(f"Error during processing: {e}")
# --- Footer ---
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p>Created by <a href='https://github.com/doganarif' target='_blank'>Arif Dogan</a> |
<a href='https://huggingface.co/arifdogan' target='_blank'>🤗 Hugging Face</a></p>
</div>
""",
unsafe_allow_html=True,
)
|