#img_gen_modal.py import modal import random import io from config.config import prompts, api_token from config.models import models_modal import os import gradio as gr import torch import sentencepiece import torch from huggingface_hub import login from transformers import AutoTokenizer import random from datetime import datetime from diffusers.callbacks import SDXLCFGCutoffCallback from diffusers import FluxPipeline from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline, AutoencoderTiny, AutoencoderKL, DiffusionPipeline, FluxTransformer2DModel, GGUFQuantizationConfig from PIL import Image from src.check_dependecies import check_dependencies import numpy as np MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 CACHE_DIR = "/model_cache" # Define the Modal image image = ( modal.Image.from_registry("nvidia/cuda:12.2.0-devel-ubuntu22.04", add_python="3.9") .pip_install_from_requirements("requirements.txt") #modal.Image.debian_slim(python_version="3.9") # Base image # .apt_install( # "git", # ) # .pip_install( # "diffusers", # f"git+https://github.com/huggingface/transformers.git" # ) .env( { "HF_HUB_ENABLE_HF_TRANSFER": "1", "HF_HOME": "HF_HOME", "HF_HUB_CACHE": CACHE_DIR } ) ) # Create a Modal app app = modal.App("LS-img-gen-modal", image=image) with image.imports(): import os flux_model_vol = modal.Volume.from_name("flux-model-vol", create_if_missing=True) # Reference your volume # GPU FUNCTION @app.function(volumes={"/data": flux_model_vol}, secrets=[modal.Secret.from_name("huggingface-token")], gpu="L40S", timeout = 300 ) # MAIN GENERATE IMAGE FUNCTION def generate_image_gpu( prompt_alias, custom_prompt, characer_dropdown, model_alias, height=360, width=640, num_inference_steps=20, guidance_scale=2.0, seed=-1): # Find the selected prompt and model print("Hello from LS_img_gen!") check_dependencies() try: prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"] model_name = next(m for m in models_modal if m["alias"] == model_alias)["name"] except StopIteration: return None, "ERROR: Invalid prompt or model selected." # Print the original prompt and dynamic values for debugging print("Original Prompt:") print(prompt) # Append the custom character (if provided) if characer_dropdown == "Wizard": prompt += f" A wizard combats using powerful magic against the {prompt_alias}" elif characer_dropdown == "Warrior": prompt += f" A warrior combats using his weapons against the {prompt_alias}" else: pass # Append the custom prompt (if provided) if custom_prompt and len(custom_prompt.strip()) > 0: prompt += " " + custom_prompt.strip() # Print the formatted prompt for debugging print("\nFormatted Prompt:") print(prompt) # Randomize the seed if needed if seed == -1: seed = random.randint(0, 1000000) # HF LOGIN print("Initializing HF TOKEN") print (api_token) # login(token=api_token) # print("model_name:") # print(model_name) # Use absolute path with leading slash model_path = f"/data/{model_name}" # Changed from "data/" to "/data/" print(f"Loading model from local path: {model_path}") # Debug: Check if the directory exists and list its contents if os.path.exists(model_path): print("Directory exists. Contents:") for item in os.listdir(model_path): print(f" - {item}") else: print(f"Directory does not exist: {model_path}") print("Contents of /data:") print(os.listdir("/data")) # CHECK FOR TORCH USING CUDA print("CHECK FOR TORCH USING CUDA") print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print("inside if") print(f"CUDA device count: {torch.cuda.device_count()}") print(f"Current device: {torch.cuda.current_device()}") print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}") try: print("-----INITIALIZING PIPE-----") pipe = FluxPipeline.from_pretrained( model_path, torch_dtype=torch.bfloat16, #torch_dtype=torch.float16, #torch_dtype=torch.float32, #vae=taef1, local_files_only=True, ) #torch.cuda.empty_cache() if torch.cuda.is_available(): print("CUDA available") print("using gpu") pipe = pipe.to("cuda") pipe_message = "CUDA" #pipe.enable_model_cpu_offload() # official recommended method but is running slower w it else: print("CUDA not available") print("using cpu") pipe = pipe.to("cpu") pipe_message = "CPU" print(f"-----{pipe_message} PIPE INITIALIZED-----") print(f"Using device: {pipe.device}") except Exception as e: print(f"Detailed error: {str(e)}") return None, f"ERROR: Failed to initialize PIPE2. Details: {e}" ########## SENDING IMG GEN TO PIPE - WORKING CODE ########## try: print("-----SENDING IMG GEN TO PIPE-----") print("-----HOLD ON-----") image = pipe( prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, max_sequence_length=512, #callback_on_step_end=decode_tensors, #callback_on_step_end_tensor_inputs=["latents"], # seed=seed ).images[0] ############################################################# print("-----IMAGE GENERATED SUCCESSFULLY!-----") print(image) except Exception as e: return f"ERROR: Failed to initialize InferenceClient. Details: {e}" try: # Save the image with a timestamped filename print("-----SAVING-----", image) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"/data/LS_images/{timestamp}_{seed}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{characer_dropdown.replace(' ', '_').lower()}.png" try: image.save(output_filename) except Exception as e: return None, f"ERROR: Failed to save image. Details: {e}" print("-----DONE!-----") print("-----CALL THE BANNERS!-----") except Exception as e: print(f"ERROR: Failed to save image. Details: {e}") # Return the filename and success message return image, "Image generated successfully!"