File size: 1,528 Bytes
dccef32 68301e4 660bf8a dccef32 68301e4 660bf8a 68301e4 660bf8a 98ae266 660bf8a 68301e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
import subprocess as sp
from skimage.measure import marching_cubes
import nibabel as nib
from nibabel.processing import resample_to_output
def nifti_to_glb(path):
# load NIFTI into numpy array
image = nib.load(path)
resampled = resample_to_output(image, [1, 1, 1], order=1)
data = resampled.get_fdata().astype("uint8")
# extract surface
verts, faces, normals, values = marching_cubes(data, 0)
faces += 1
with open('prediction.obj', 'w') as thefile:
for item in verts:
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
for item in normals:
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
for item in faces:
thefile.write("f {0}//{0} {1}//{1} {2}//{2}\n".format(item[0],item[1],item[2]))
def run_model(input_path):
sp.check_call(["livermask", "--input", input_path, "--output", "prediction", "--verbose"])
def load_mesh(mesh_file_name):
path = mesh_file_name.name
run_model(path)
nifti_to_glb("prediction-livermask.nii")
return "./prediction.obj"
if __name__ == "__main__":
demo = gr.Interface(
fn=load_mesh,
inputs=gr.UploadButton(label="Click to Upload a File", file_type=[".nii", ".nii.nz"], file_count="single"),
outputs=gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
title="livermask demo",
description="Automatic Liver Parenchyma and vessel segmentation in CT",
)
demo.launch()
|