ai_chatbot / app.py
amitpandey8's picture
Update app.py
bfb8ce9 verified
raw
history blame contribute delete
1.74 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize the model and tokenizer
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Define the conversation flow
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Create the chat interface
css = """
body {
background-color: #f9f9f9;
}
.gradio-container {
max-width: 800px;
margin: 40px auto;
padding: 20px;
border: 1px solid #ddd;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.gradio-input {
background-color: #fff;
border: 1px solid #ccc;
padding: 10px;
border-radius: 10px;
}
.gradio-button {
background-color: #3498db;
color: #fff;
border: none;
padding: 10px 20px;
border-radius: 10px;
cursor: pointer;
}
.gradio-button:hover {
background-color: #2980b9;
}
"""
demo = gr.Interface(
fn=respond,
inputs=["text", "state", "text", "number", "number", "number"],
outputs="text",
title="NVS AI: Health Conversational Chatbot",
description="Get answers to your health-related questions!",
)
demo.launch()