import spaces import gradio as gr import os import sys from glob import glob import time from typing import Any, Union import numpy as np import torch import uuid import shutil print(f'torch version:{torch.__version__}') import trimesh import glob from huggingface_hub import snapshot_download from PIL import Image from accelerate.utils import set_seed import subprocess import importlib, site, sys # Re-discover all .pth/.egg-link files for sitedir in site.getsitepackages(): site.addsitedir(sitedir) # Clear caches so importlib will pick up new modules importlib.invalidate_caches() def sh(cmd): subprocess.check_call(cmd, shell=True) def install_cuda_toolkit(): CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.6.0/local_installers/cuda_12.6.0_560.28.03_linux.run" CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) subprocess.check_call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) subprocess.check_call(["chmod", "+x", CUDA_TOOLKIT_FILE]) subprocess.check_call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) os.environ["CUDA_HOME"] = "/usr/local/cuda" os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( os.environ["CUDA_HOME"], "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], ) # add for compiler header lookup os.environ["CPATH"] = f"{os.environ['CUDA_HOME']}/include" + ( f":{os.environ['CPATH']}" if "CPATH" in os.environ else "" ) # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range os.environ["TORCH_CUDA_ARCH_LIST"] = "8.9;9.0" print("==> finished installation") print("installing cuda toolkit") install_cuda_toolkit() print("finished") os.environ["PARTCRAFTER_PROCESSED"] = f"{os.getcwd()}/proprocess_results" def sh(cmd_list, extra_env=None): env = os.environ.copy() if extra_env: env.update(extra_env) subprocess.check_call(cmd_list, env=env) # install with FORCE_CUDA=1 sh(["pip", "install", "diso"], {"FORCE_CUDA": "1"}) # sh(["pip", "install", "torch-cluster", "-f", "https://data.pyg.org/whl/torch-2.7.0+126.html"]) # tell Python to re-scan site-packages now that the egg-link exists import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches() from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings from src.pipelines.pipeline_partcrafter import PartCrafterPipeline from src.utils.image_utils import prepare_image from src.models.briarmbg import BriaRMBG # Constants MAX_NUM_PARTS = 16 DEVICE = "cuda" DTYPE = torch.float16 # Download and initialize models partcrafter_weights_dir = "pretrained_weights/PartCrafter" rmbg_weights_dir = "pretrained_weights/RMBG-1.4" snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir) snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir) rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(DEVICE) rmbg_net.eval() pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(DEVICE, DTYPE) def first_file_from_dir(directory, ext): files = glob.glob(os.path.join(directory, f"*.{ext}")) return sorted(files)[0] if files else None def get_duration( image_path, num_parts, seed, num_tokens, num_inference_steps, guidance_scale, use_flash_decoder, rmbg, session_id, progress, ): duration_seconds = 60 if num_parts > 5: duration_seconds = 75 elif num_parts > 10: duration_seconds = 90 return int(duration_seconds) @spaces.GPU(duration=get_duration) @torch.no_grad() def run_triposg(image_path: str, num_parts: int = 1, seed: int = 0, num_tokens: int = 1024, num_inference_steps: int = 50, guidance_scale: float = 7.0, use_flash_decoder: bool = False, rmbg: bool = True, session_id = None, progress=gr.Progress(track_tqdm=True),): """ Generate 3D part meshes from an input image. """ max_num_expanded_coords = 1e9 if session_id is None: session_id = uuid.uuid4().hex if rmbg: img_pil = prepare_image(image_path, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net) else: img_pil = Image.open(image_path) set_seed(seed) start_time = time.time() outputs = pipe( image=[img_pil] * num_parts, attention_kwargs={"num_parts": num_parts}, num_tokens=num_tokens, generator=torch.Generator(device=pipe.device).manual_seed(seed), num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, max_num_expanded_coords=max_num_expanded_coords, use_flash_decoder=use_flash_decoder, ).meshes duration = time.time() - start_time print(f"Generation time: {duration:.2f}s") # Ensure no None outputs for i, mesh in enumerate(outputs): if mesh is None: outputs[i] = trimesh.Trimesh(vertices=[[0,0,0]], faces=[[0,0,0]]) # Merge and color merged = get_colored_mesh_composition(outputs) export_dir = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], session_id) os.makedirs(export_dir, exist_ok=True) for idx, mesh in enumerate(outputs): mesh.export(os.path.join(export_dir, f"part_{idx:02}.glb")) glb_path = os.path.join(export_dir, "object.glb") merged.export(glb_path) mesh_file = first_file_from_dir(export_dir, "glb") return mesh_file, export_dir def cleanup(request: gr.Request): sid = request.session_hash if sid: d1 = os.path.join(os.environ["PARTCRAFTER_PROCESSED"], sid) shutil.rmtree(d1, ignore_errors=True) def start_session(request: gr.Request): return request.session_hash def build_demo(): css = """ #col-container { margin: 0 auto; max-width: 1024px; } """ theme = gr.themes.Ocean() with gr.Blocks(css=css, theme=theme) as demo: session_state = gr.State() demo.load(start_session, outputs=[session_state]) with gr.Column(elem_id="col-container"): gr.HTML( """
""" ) gr.Markdown( """ • HF Space by : [@alexandernasa](https://twitter.com/alexandernasa/) """ ) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(type="filepath", label="Input Image") num_parts = gr.Slider(1, MAX_NUM_PARTS, value=4, step=1, label="Number of Parts") run_button = gr.Button("Generate 3D Parts", variant="primary") with gr.Accordion("Advanced Settings", open=False): seed = gr.Number(value=0, label="Random Seed", precision=0) num_tokens = gr.Slider(256, 2048, value=1024, step=64, label="Num Tokens") num_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps") guidance = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale") flash_decoder = gr.Checkbox(value=False, label="Use Flash Decoder") remove_bg = gr.Checkbox(value=True, label="Remove Background (RMBG)") with gr.Column(scale=1): gr.HTML( """The 3D Preview might take a few seconds to load the 3D model
""" ) output_model = gr.Model3D(label="Merged 3D Object", height=512) output_dir = gr.Textbox(label="Export Directory", visible=False) examples = gr.Examples( examples=[ [ "assets/images/np5_b81f29e567ea4db48014f89c9079e403.png", 5, ], [ "assets/images/np10_cc486e491a2c499f9fd2aad2b02c6ccb.png", 10, ], [ "assets/images/np4_7bd5d25aa77b4fb18e780d7a4c97d342.png", 4, ], ], inputs=[input_image, num_parts], outputs=[output_model, output_dir], fn=run_triposg, cache_examples=True, ) run_button.click(fn=run_triposg, inputs=[input_image, num_parts, seed, num_tokens, num_steps, guidance, flash_decoder, remove_bg, session_state], outputs=[output_model, output_dir]) return demo if __name__ == "__main__": demo = build_demo() demo.unload(cleanup) demo.queue() demo.launch()