|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
model = pipeline("text-classification", |
|
model="OpenAlex/bert-base-multilingual-cased-finetuned-openalex-topic-classification-title-abstract") |
|
|
|
|
|
def classify_text(text, top_k): |
|
result = model(text, top_k=top_k, truncation=True, max_length=512) |
|
return {p["label"]: p["score"] for p in result} |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Interface( |
|
fn=classify_text, |
|
inputs=[gr.Textbox(lines=5, label="Text", placeholder="<TITLE> {title}\n<ABSTRACT> {abstract}", |
|
value="<TITLE> {title}\n<ABSTRACT> {abstract}"), |
|
gr.Number(label="top_k", value=10, precision=0)], |
|
outputs=gr.Label(label="openalex topic predicted"), |
|
title="OpenAlex topic classification", |
|
description="Enter a text and see the topic classification result!", |
|
flagging_mode="never", |
|
api_name="classify" |
|
) |
|
|
|
if __name__ == "__main__": |
|
print(gr.__version__) |
|
demo.launch() |
|
|