venky2k1 commited on
Commit
f77de4a
Β·
1 Parent(s): d3e257b

Deploy project

Browse files
Files changed (2) hide show
  1. app.py +6 -4
  2. requirements.txt +4 -4
app.py CHANGED
@@ -1,4 +1,4 @@
1
- ifrom flask import Flask, request, jsonify
2
  from flask_cors import CORS
3
  import torch
4
  from transformers import RobertaTokenizer, RobertaForSequenceClassification
@@ -6,12 +6,13 @@ from transformers import RobertaTokenizer, RobertaForSequenceClassification
6
  app = Flask(__name__)
7
  CORS(app)
8
 
 
9
  tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
10
  model = RobertaForSequenceClassification.from_pretrained("microsoft/codebert-base")
11
 
12
  @app.route("/")
13
  def home():
14
- return "βœ… Bug Detection and Fixing API is Running!"
15
 
16
  @app.route("/detect", methods=["POST"])
17
  def detect_bug():
@@ -24,8 +25,9 @@ def detect_bug():
24
  inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True)
25
  outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
26
  prediction = torch.argmax(outputs.logits, dim=1).item()
27
- status = "πŸ› Buggy" if prediction == 1 else "βœ… Clean"
28
- return jsonify({"status": status})
 
29
 
30
  except Exception as e:
31
  return jsonify({"error": str(e)}), 500
 
1
+ from flask import Flask, request, jsonify
2
  from flask_cors import CORS
3
  import torch
4
  from transformers import RobertaTokenizer, RobertaForSequenceClassification
 
6
  app = Flask(__name__)
7
  CORS(app)
8
 
9
+ # Load model and tokenizer
10
  tokenizer = RobertaTokenizer.from_pretrained("microsoft/codebert-base")
11
  model = RobertaForSequenceClassification.from_pretrained("microsoft/codebert-base")
12
 
13
  @app.route("/")
14
  def home():
15
+ return "Bug Detection and Fixing API is running!"
16
 
17
  @app.route("/detect", methods=["POST"])
18
  def detect_bug():
 
25
  inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True)
26
  outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"])
27
  prediction = torch.argmax(outputs.logits, dim=1).item()
28
+ bug_status = "buggy" if prediction == 1 else "clean"
29
+
30
+ return jsonify({"status": bug_status})
31
 
32
  except Exception as e:
33
  return jsonify({"error": str(e)}), 500
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
- transformers
2
- torch
 
 
3
  gradio==4.44.1
4
- flask
5
- flask-cors
 
1
+ transformers==4.52.4
2
+ torch==2.7.1
3
+ flask==3.1.1
4
+ flask-cors==4.0.0
5
  gradio==4.44.1