Spaces:
Runtime error
Runtime error
<<<<<<< HEAD | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
# Load CodeT5+ model for code fixing | |
model_ckpt = "Salesforce/codet5p-220m" | |
tokenizer = AutoTokenizer.from_pretrained(model_ckpt) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt) | |
def fix_code(code): | |
prompt = f"fix: {code}" | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
output = model.generate(inputs["input_ids"], max_length=256) | |
fixed_code = tokenizer.decode(output[0], skip_special_tokens=True) | |
return fixed_code.strip() | |
======= | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
# Load pre-trained CodeBERT model | |
model = AutoModelForSequenceClassification.from_pretrained("microsoft/codebert-base", num_labels=2) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") | |
def detect_bug(code): | |
inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True) | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
return "buggy" if probabilities[0][1] > probabilities[0][0] else "correct" | |
# Optional test | |
if __name__ == "__main__": | |
sample = "def multiply(a, b): return a + b" | |
print(detect_bug(sample)) | |
#detects if there's a bug in code | |
>>>>>>> 22b22edd4386cff48f5ad4c4325e1f8524238b52 | |